Skip to main content

Differential Scanning Calorimetry to Quantify Heat-Induced Aggregation in Concentrated Protein Solutions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2039))

Abstract

Differential scanning calorimetry (DSC) is an important technique to measure the thermodynamics of protein unfolding (or folding). Information including the temperature for the onset of unfolding, the melt transition temperature (Tm), enthalpy of unfolding (ΔH), and refolding index (RI) are useful for evaluating the heat stability of proteins for a range of biochemical, structural biology, industrial, and pharmaceutical applications. We describe a procedure for careful sample preparation of proteins for DSC measurements and data analysis to determine a range of thermodynamic parameters. In particular, we highlight a measure of protein refolding following complete thermal denaturation (RI), which quantifies the proportion of protein lost to irreversible aggregation after thermal denaturation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. Pharm Res 20:12. https://doi.org/10.1023/A:1025771421906

    Article  Google Scholar 

  2. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB (2011) Protein–excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 63:1118–1159. https://doi.org/10.1016/j.addr.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  3. Roberts CJ (2014) Protein aggregation and its impact on product quality. Curr Opin Biotechnol 30:211–217. https://doi.org/10.1016/j.copbio.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  4. Wu H, Kroe-Barrett R, Singh S, Robinson AS, Roberts CJ (2014) Competing aggregation pathways for monoclonal antibodies. FEBS Lett 588:936–941. https://doi.org/10.1016/j.febslet.2014.01.051

    Article  CAS  PubMed  Google Scholar 

  5. Barnett GV, Drenski M, Razinkov V, Reed WF, Roberts CJ (2016) Identifying protein aggregation mechanisms and quantifying aggregation rates from combined monomer depletion and continuous scattering. Anal Biochem 511:80–91. https://doi.org/10.1016/j.ab.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alam P, Siddiqi K, Chturvedi SK, Khan RH (2017) Protein aggregation: from background to inhibition strategies. Int J Biol Macromol 103:208–219. https://doi.org/10.1016/j.ijbiomac.2017.05.048

    Article  CAS  PubMed  Google Scholar 

  7. Wang W, Roberts CJ (2018) Protein aggregation – mechanisms, detection, and control. Int J Pharm 550:251–268. https://doi.org/10.1016/j.ijpharm.2018.08.043

    Article  CAS  PubMed  Google Scholar 

  8. Privalov PL, Khechinashvili NN (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol 86:665–684. https://doi.org/10.1016/0022-2836(74)90188-0

    Article  CAS  PubMed  Google Scholar 

  9. Cooper A (1999) Thermodynamic analysis of biomolecular interactions. Curr Opin Chem Biol 3:557–563. https://doi.org/10.1016/S1367-5931(99)00008-3

    Article  CAS  PubMed  Google Scholar 

  10. Johnson CM (2013) Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 531:100–109. https://doi.org/10.1016/j.abb.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  11. Bruylants G, Wouters J, Michaux C (2011) Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem 12:2011–2020. https://doi.org/10.2174/0929867054546564

    Article  Google Scholar 

  12. James S, McManus JJ (2012) Thermal and solution stability of lysozyme in the presence of sucrose, glucose, and trehalose. J Phys Chem B 116:10182–10188. https://doi.org/10.1021/jp303898g

    Article  CAS  PubMed  Google Scholar 

  13. Rosa M, Roberts CJ, Rodrigues MA (2017) Connecting high-temperature and low-temperature protein stability and aggregation. PLoS One 12:e0176748. https://doi.org/10.1371/journal.pone.0176748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blumlein A, McManus JJ (2013) Reversible and non-reversible thermal denaturation of lysozyme with varying pH at low ionic strength. Biochim Biophys Acta 1834:2064–2070. https://doi.org/10.1016/j.bbapap.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  15. Stavropoulos P, Thanassoulas A, Nounesis G (2018) The effect of cations on reversibility and thermodynamic stability during thermal denaturation of lysozyme. J Chem Thermodyn 118:331–337. https://doi.org/10.1016/j.jct.2017.10.006

    Article  CAS  Google Scholar 

  16. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC (2017) Role of buffers in protein formulations. J Pharm Sci 106:713–733. https://doi.org/10.1016/j.xphs.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  17. Mahler H-C, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98:2909–2934. https://doi.org/10.1002/jps.21566

    Article  CAS  PubMed  Google Scholar 

  18. Schön A, Clarkson BR, Siles R, Ross P, Brown RK, Freire E (2015) Denatured state aggregation parameters derived from concentration dependence of protein stability. Anal Biochem 488:45–50. https://doi.org/10.1016/j.ab.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  19. Wu S, Ding Y, Zhang G (2015) Mechanic insight into aggregation of lysozyme by ultrasensitive differential scanning calorimetry and sedimentation velocity. J Phys Chem B 119:15789–15795. https://doi.org/10.1021/acs.jpcb.5b08190

    Article  CAS  PubMed  Google Scholar 

  20. Peng J, Tang J, Barrett DM, Sablani SS, Anderson N, Powers JR (2017) Thermal pasteurization of ready-to-eat foods and vegetables: critical factors for process design and effects on quality. Crit Rev Food Sci Nutr 57:2970–2995. https://doi.org/10.1080/10408398.2015.1082126

    Article  CAS  PubMed  Google Scholar 

  21. Ling B, Tang J, Kong F, Mitcham EJ, Wang S (2015) Kinetics of food quality changes during thermal processing: a review. Food Bioprocess Technol 8:343–358. https://doi.org/10.1007/s11947-014-1398-3

    Article  CAS  Google Scholar 

  22. Niedziela-Majka A, Kan E, Weissburg P, Mehra U, Sellers S, Sakowicz R (2015) High-throughput screening of formulations to optimize the thermal stability of a therapeutic monoclonal antibody. J Biomol Screen 20:552–559. https://doi.org/10.1177/1087057114557781

    Article  CAS  PubMed  Google Scholar 

  23. He F, Woods CE, Trilisky E, Bower KM, Litowski JR, Kerwin BA, Becker GW, Narhi LO, Razinkov VI (2011) Screening of monoclonal antibody formulations based on high-throughput thermostability and viscosity measurements: design of experiment and statistical analysis. J Pharm Sci 100:1330–1340. https://doi.org/10.1002/jps.22384

    Article  CAS  PubMed  Google Scholar 

  24. He F, Hogan S, Latypov RF, Narhi LO, Razinkov VI (2010) High throughput thermostability screening of monoclonal antibody formulations. J Pharm Sci 99:1707–1720. https://doi.org/10.1002/jps.21955

    Article  CAS  PubMed  Google Scholar 

  25. Harn N, Allan C, Oliver C, Middaugh CR (2007) Highly concentrated monoclonal antibody solutions: direct analysis of physical structure and thermal stability. J Pharm Sci 96:532–546. https://doi.org/10.1002/jps.20753

    Article  CAS  PubMed  Google Scholar 

  26. Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, Topp EM (2016) Immunogenicity of therapeutic protein aggregates. J Pharm Sci 105:417–430. https://doi.org/10.1016/j.xphs.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  27. Dobson CM, Evans PA, Radford SE (1994) Understanding how proteins fold: the lysozyme story so far. Trends Biochem Sci 19:31–37. https://doi.org/10.1016/0968-0004(94)90171-6

    Article  CAS  PubMed  Google Scholar 

  28. Esposito A, Comez L, Cinelli S, Scarponi F, Onori G (2009) Influence of glycerol on the structure and thermal stability of lysozyme: a dynamic light scattering and circular dichroism study. J Phys Chem B 113:16420–16424. https://doi.org/10.1021/jp906739v

    Article  CAS  PubMed  Google Scholar 

  29. Meng-Lund H, Friis N, van de Weert M, Rantanen J, Poso A, Grohganz H, Jorgensen L (2017) Correlation between calculated molecular descriptors of excipient amino acids and experimentally observed thermal stability of lysozyme. Int J Pharm 523:238–245. https://doi.org/10.1016/j.ijpharm.2017.03.043

    Article  CAS  PubMed  Google Scholar 

  30. Alam MT, Rizvi A, Rauf MA, Owais M, Naeem A (2018) Thermal unfolding of human lysozyme induces aggregation: recognition of the aggregates by antisera against the native protein. Int J Biol Macromol 113:976–982. https://doi.org/10.1016/j.ijbiomac.2018.02.095

    Article  CAS  PubMed  Google Scholar 

  31. Sophianopoulos AJ, Rhodes CK, Holcomb DN, van Holde KE (1962) Physical studies of lysozyme: I. Characerization. J Biol Chem 237:1107–1112

    CAS  PubMed  Google Scholar 

  32. Harding SE, Chowdhry B (2000) Protein-ligand interactions: hydrodynamics and calorimetry: a practical approach. In: Oxford University Press. Oxford, New York, NY

    Google Scholar 

Download references

Acknowledgments

The research work presented in this chapter was made possible through the financial support of Enterprise Ireland under grant number [IP/2015 0358] and the Synthesis and Solid State Pharmaceutical Centre, cofunded under the European Regional Development Fund, and the Department of Agriculture Food and Marine, FIRM grant number [11/F/037], SFI Stokes Lectureship to J.J.M., and Maynooth University Teaching Fellowship to A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. McManus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jacobs, M.R., Grace, M., Blumlein, A., McManus, J.J. (2019). Differential Scanning Calorimetry to Quantify Heat-Induced Aggregation in Concentrated Protein Solutions. In: McManus, J. (eds) Protein Self-Assembly. Methods in Molecular Biology, vol 2039. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9678-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9678-0_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9677-3

  • Online ISBN: 978-1-4939-9678-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics