Binding Free Energies of Conformationally Disordered Peptides Through Extensive Sampling and End-Point Methods

  • Matthew G. Nixon
  • Elisa FaddaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2039)


The ability to obtain binding free energies from molecular simulation techniques provides a valuable support to the interpretation and design of experiments. Among all methods available, the most widely used equilibrium free energy methods range from highly accurate and computationally expensive perturbation theory-based methods, such as free energy perturbation (FEP), or thermodynamic integration (TI), through end-point methods, such as molecular mechanics with generalized Born and surface area solvation (MM/GBSA) or MM/PBSA, when the Poisson–Boltzmann method is used instead of GB, and linear interaction energy (LIE) methods, to scoring functions, which are relatively simple empirical functions widely used as part of molecular docking protocols. Because the use of FEP and TI approaches is restricted to cases where the perturbation leading from an initial to final state is negligible or minimal, their application to cases where large conformational changes are involved between bound and unbound states is rather complex, if not prohibitive in terms of convergence. Here we describe a protocol that involves the use of extensive conformational sampling through molecular dynamics (MD) in combination with end-point methods (MM/GB(PB)SA) with an additional quasi-harmonic entropy component, for the calculation of the relative binding free energies of highly flexible, or intrinsically disordered, peptides to a structured receptor.

Key words

Binding free energy MM/GBSA Protein–protein interactions Intrinsically disordered proteins Prestructuring Molecular recognition Conformational sampling Molecular dynamics 


  1. 1.
    Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signaling and regulation. Nat Rev Mol Cell Biol 16(1):18–29CrossRefGoogle Scholar
  2. 2.
    Dunker AK, Obradovic Z, Romero P, Garner EC (2000) Intrinsic protein disorder in complete genomes. Genome Inform 11:161–171Google Scholar
  3. 3.
    Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354CrossRefGoogle Scholar
  4. 4.
    Babu M, van der Lee R, de Groot NS, Gsponer J (2011) Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol 21:432–440CrossRefGoogle Scholar
  5. 5.
    Mollica L, Bessa LM, Hanoulle X, Jensen MR, Blackledge M, Schneider R (2016) Binding mechanisms of intrinsically disordered proteins: theory, simulation, and experiment. Front Mol Biosci 3:1–18CrossRefGoogle Scholar
  6. 6.
    Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049CrossRefGoogle Scholar
  7. 7.
    Fadda E (2016) Role of the XPA protein in the NER pathway: a perspective on the function of structural disorder in macromolecular assembly. Comput Struct Biotechnol J 14:78–85CrossRefGoogle Scholar
  8. 8.
    Fadda E, Nixon MG (2017) The transient manifold structure of the p53 extreme C-terminal domain: insight into disorder, recognition, and binding promiscuity by molecular dynamics simulations. Phys Chem Chem Phys 19:21287–21296CrossRefGoogle Scholar
  9. 9.
    Wayment-Steele HK, Hernandez CX, Pande VS (2018) Modelling intrinsically disordered protein dynamics as networks of transient secondary structure. bioRxiv.
  10. 10.
    Choi UB, McCann JJ, Weninger KR, Bowen ME (2011) Beyond the random coil: stochastic conformational switching in intrinsically disordered proteins. Structure 19:566–576CrossRefGoogle Scholar
  11. 11.
    Fuxreiter M, Simon I, Friedrich P, Tompa P (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026CrossRefGoogle Scholar
  12. 12.
    Salmon L, Nodet G, Ozenne V, Yin G, Jensen MR, Zweckestetter M, Blackledge M (2010) NMR characterization of long-range order in intrinsically disordered proteins. J Am Chem Soc 132:8407–8418CrossRefGoogle Scholar
  13. 13.
    Tompa P, Szász C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489CrossRefGoogle Scholar
  14. 14.
    Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9:S1CrossRefGoogle Scholar
  15. 15.
    Arai M, Sugase K, Dyson HJ, Wright PE (2015) Conformational propensities of intrinsically disordered proteins influence the mechanism of binding and folding. Proc Natl Acad Sci 112:9614–9619CrossRefGoogle Scholar
  16. 16.
    Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 35:539–546CrossRefGoogle Scholar
  17. 17.
    Meirovitch H, Cheluvaraja S, White DP (2009) Methods for calculating the entropy and free energy to problems involving protein flexibility and ligand binding. Curr Protein Pept Sci 10:229–243CrossRefGoogle Scholar
  18. 18.
    Perez A, Morrone JA, Simmerling C, Dill KA (2016) Advances in free-energy-based simulations of protein folding and ligand binding. Curr Opin Struct Biol 36:25–31CrossRefGoogle Scholar
  19. 19.
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897CrossRefGoogle Scholar
  20. 20.
    Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discovery 10:449–461CrossRefGoogle Scholar
  21. 21.
    Brooks BB, Janežič D, Karplus M (1995) Harmonic analysis of large systems. I. Methodology. J Comput Chem 16:1522–1542CrossRefGoogle Scholar
  22. 22.
    Schlitter J (1993) Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chem Phys Lett 215:617–621CrossRefGoogle Scholar
  23. 23.
    Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151CrossRefGoogle Scholar
  24. 24.
    Hilser VJ, Garcia-Moreno EB, Oas TG, Kapp G, Whitten ST (2006) A statistical thermodynamic model of the protein ensemble. Chem Rev 106:1545–1558CrossRefGoogle Scholar
  25. 25.
    Grünberg R, Nilges M, Leckner J (2006) Flexibility and conformational entropy in protein-protein binding. Structure 14:683–693CrossRefGoogle Scholar
  26. 26.
    Tsodikov OV, Ivanov D, Orelli B, Staresincic L, Shoshani I, Oberman R, Scharer OD, Wagner G, Ellenberger T (2007) Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. EMBO J 26:4768–4776CrossRefGoogle Scholar
  27. 27.
    Fadda E (2013) Conformational determinants for the recruitment of ERCC1 by XPA in the nucleotide excision repair (NER) pathway: structure and dynamics of the XPA binding motif. Biophys J 104:2503–2511CrossRefGoogle Scholar
  28. 28.
    Fadda E (2015) The role of conformational selection in the molecular recognition of the wild type and mutants XPA67-80 peptides by ERCC1. Proteins 83:1341–1351CrossRefGoogle Scholar
  29. 29.
    Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber99SB protein force field. Proteins 78:1950–1958PubMedPubMedCentralGoogle Scholar
  30. 30.
    Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678CrossRefGoogle Scholar
  31. 31.
    Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefGoogle Scholar
  32. 32.
    Case DA, Darden TA, Cheatham IIITE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts B, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2012) Amber 12 reference manual. University of California, San Francisco, CAGoogle Scholar
  33. 33.
    Humphrey W, Dalke A, Schulten K (1996) VMD – visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  34. 34.
    Hess B, Bekker H, Berendsen HJ, Fraaije JG (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  35. 35.
    Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren WF, Mark AE (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240CrossRefGoogle Scholar
  36. 36.
    Rauscher S, Gapsys V, Gajda MJ, Zweckstetter M, de Groot BL, Grubmüller H (2015) Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J Chem Theory Comput 11:5513–5524CrossRefGoogle Scholar
  37. 37.
    Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci. Scholar
  38. 38.
    Miller IIIBR, McGee TD Jr, Swails JM, Homeyer N, Gohlke H, Roitberg AE (2012) an efficient program for end-state free energy calculations. J Chem Theory Comput 8:3314–3321CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Hamilton InstituteMaynooth UniversityMaynoothIreland

Personalised recommendations