Real-Time Observation of Localization and Expression (ROLEX) System for Live Imaging of the Transcriptional Activity and Nuclear Position of a Specific Endogenous Gene

  • Hiroshi OchiaiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2038)


Long genomic DNA is folded in a cell-type-specific manner and stored in the cell nucleus. The higher-order structure of genomic DNA is thought to be important for DNA transcription, repair, and replication. Recent advancements in live cell imaging techniques that enable the labeling of specific genomic loci and RNA have made it possible to capture the dynamic relationships between higher-order genomic structure and gene expression. We have established the real-time observation of localization and expression (ROLEX) system for live imaging of the transcriptional state and nuclear position of a specific endogenous gene. In this chapter, I will introduce the detailed protocol of ROLEX imaging in mouse embryonic stem cells.

Key words

Transcription Gene locus Dynamics CRISPR MS2 


  1. 1.
    Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403CrossRefPubMedGoogle Scholar
  2. 2.
    Dekker J, Belmont AS, Guttman M et al (2017) The 4D nucleome project. Nature 549:219–226CrossRefPubMedGoogle Scholar
  3. 3.
    Pombo A, Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16:245–257CrossRefGoogle Scholar
  4. 4.
    Nagano T, Lubling Y, Stevens TJ et al (2014) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64CrossRefGoogle Scholar
  5. 5.
    Ramani V, Deng X, Qiu R et al (2017) Massively multiplex single-cell Hi-C. Nat Cell Biol 14:263–266Google Scholar
  6. 6.
    Nagano T, Lubling Y, Várnai C et al (2017) Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547:61–67CrossRefPubMedGoogle Scholar
  7. 7.
    Wang S, Su J-H, Beliveau BJ et al (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353:aaf8084–aaf8602Google Scholar
  8. 8.
    Bintu B, Mateo LJ, Su J-H et al (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362:eaau1783CrossRefPubMedGoogle Scholar
  9. 9.
    Noordermeer D, de Wit E, Klous P et al (2011) Variegated gene expression caused by cell-specific long-range DNA interactions. Nat Cell Biol 13:944–951CrossRefPubMedGoogle Scholar
  10. 10.
    Giorgetti L, Galupa R, Nora EP et al (2014) Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–963CrossRefPubMedGoogle Scholar
  11. 11.
    Ochiai H, Sugawara T, Yamamoto T (2015) Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res 43:e127–e127CrossRefPubMedGoogle Scholar
  12. 12.
    Chen H, Levo M, Barinov L et al (2018) Dynamic interplay between enhancer–promoter topology and gene activity. Nat Genet 50:1296–1303CrossRefPubMedGoogle Scholar
  13. 13.
    Tyagi S (2009) Imaging intracellular RNA distribution and dynamics in living cells. Nat Methods 6:331–338CrossRefGoogle Scholar
  14. 14.
    Larson DR, Zenklusen D, Wu B et al (2011) Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332:475–478CrossRefPubMedGoogle Scholar
  15. 15.
    Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123:1025–1036CrossRefGoogle Scholar
  16. 16.
    Chubb JR, Trcek T, Shenoy SM, Singer RH (2006) Transcriptional pulsing of a developmental gene. Curr Biol 16:1018–1025CrossRefPubMedGoogle Scholar
  17. 17.
    Raj A, Peskin CS, Tranchina D et al (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309CrossRefPubMedGoogle Scholar
  18. 18.
    Suter DM, Molina N, Gatfield D et al (2011) Mammalian genes are transcribed with widely different bursting kinetics. Science 332:472–474CrossRefGoogle Scholar
  19. 19.
    Straight AF, Belmont AS, Robinett CC, Murray AW (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol 6:1599–1608CrossRefPubMedGoogle Scholar
  20. 20.
    Viollier PH, Thanbichler M, McGrath PT et al (2004) Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc Natl Acad Sci 101:9257–9262CrossRefGoogle Scholar
  21. 21.
    Saad H, Gallardo F, Dalvai M et al (2014) DNA dynamics during early double-strand break processing revealed by non-intrusive imaging of living cells. PLoS Genet 10:e1004187CrossRefPubMedGoogle Scholar
  22. 22.
    Germier T, Kocanova S, Walther N et al (2017) Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophys J 113:1383–1394CrossRefPubMedGoogle Scholar
  23. 23.
    Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491CrossRefPubMedGoogle Scholar
  24. 24.
    Anton T, Karg E, Bultmann S (2018) Applications of the CRISPR/Cas system beyond gene editing. Biol Methods Protoc 3(1):bpy002CrossRefGoogle Scholar
  25. 25.
    Koch B, Nijmeijer B, Kueblbeck M et al (2018) Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat Protoc 13:1465–1487CrossRefPubMedGoogle Scholar
  26. 26.
    Gu B, Swigut T, Spencley A et al (2018) Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359:1050–1055CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.JST, PRESTOHigashi-HiroshimaJapan
  2. 2.Graduate School of Integrated Sciences for LifeHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations