Skip to main content

Visualizing Transcription Factor Binding on Mitotic Chromosomes Using Single-Molecule Live-Cell Imaging

  • Protocol
  • First Online:
Imaging Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2038))

  • 1769 Accesses

Abstract

For over two decades, scientists have observed that most transcription factors (TFs) become excluded from mitotic chromosomes of mammalian cells undergoing cell division. The few TFs that were observed to remain bound to chromosomes have been termed mitotic bookmarkers and were predicted to play important roles in reestablishing transcription after mitosis. Using live-cell imaging of endogenous TFs in mouse embryonic stem cells, we discovered that the observed exclusion from mitotic chromosomes is largely a result of formaldehyde cross-linking and that in fact, most TFs bind to mitotic chromosomes throughout mitosis. Here, we describe the single-molecule live-cell imaging and analytical tools we used to characterize and quantify TF diffusion and binding as mouse embryonic stem cells proceed through mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rhind N, Russell P (2012) Signaling pathways that regulate cell division. Cold Spring Harb Perspect Biol 4:a005942–a005942. https://doi.org/10.1101/cshperspect.a005942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Prescott DM, Bender MA (1962) Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp Cell Res 26:260–268

    Article  PubMed  Google Scholar 

  3. Taylor JH (1960) Nucleic acid synthesis in relation to the cell division cycle. Ann N Y Acad Sci 90:409–421

    Article  CAS  PubMed  Google Scholar 

  4. Koshland D, Strunnikov A (1995) Mitotic chromosome condensation. Annu Rev Cell Dev Biol 12:305–333

    Article  Google Scholar 

  5. Gottesfeld J, Forbes DJ (1997) Mitotic repression of the transcriptional machinery. Trends Biochem Sci 22:197–202. https://doi.org/10.1016/S0968-0004(97)01045-1

    Article  CAS  PubMed  Google Scholar 

  6. John S, Workman JL (1998) Bookmarking genes for activation in condensed mitotic chromosomes. BioEssays: news and reviews in molecular, cellular and developmental biology 20:275–279. https://doi.org/10.1002/(SICI)1521-1878(199804)20:4<275::AID-BIES1>3.0.CO;2-P

    Article  CAS  Google Scholar 

  7. Martínez-Balbás MA, Dey A, Rabindran SK et al (1995) Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38. https://doi.org/10.1016/0092-8674(95)90231-7

    Article  PubMed  Google Scholar 

  8. Rizkallah R, Hurt MM (2009) Regulation of the transcription factor YY1 in mitosis through phosphorylation of its DNA-binding domain. Mol Biol Cell 20:4766–4776. https://doi.org/10.1091/mbc.E09-04-0264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lodhi N, Ji Y, Tulin A (2016) Mitotic bookmarking: maintaining post-mitotic reprogramming of transcription reactivation. Current molecular biology reports 2:10–16. https://doi.org/10.1007/s40610-016-0029-3

    Article  PubMed Central  PubMed  Google Scholar 

  10. Jonathan Lerner, Alessia Bagattin, Francisco Verdeguer, Munevver P. Makinistoglu, Serge Garbay, Tristan Felix, Laurence Heidet, Marco Pontoglio, (2016) Human mutations affect the epigenetic/bookmarking function of HNF1B. Nucleic Acids Research 44 (17):8097-8111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coralie Pallier, Paola Scaffidi, Stéphanie Chopineau-Proust, Alessandra Agresti, Patrice Nordmann, Marco E. Bianchi, Vincent Marechal, (2003) Association of Chromatin Proteins High Mobility Group Box (HMGB) 1 and HMGB2 with Mitotic Chromosomes. Molecular Biology of the Cell 14 (8):3414-3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teves SS, An L, Hansen AS et al (2016) A dynamic mode of mitotic bookmarking by transcription factors. Elife 5:421–423. https://doi.org/10.7554/eLife.22280

    Article  CAS  Google Scholar 

  13. Los GV, Wood K (2007) The HaloTag: a novel technology for cell imaging and protein analysis. Methods Mol Biol (Clifton, NJ) 356:195–208

    CAS  Google Scholar 

  14. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Grimm JB, Brown TA, English BP et al (2017) Synthesis of Janelia Fluor HaloTag and SNAP-Tag ligands and their use in cellular imaging experiments. Methods Mol Biol (Clifton, NJ) 1663:179–188

    Article  CAS  Google Scholar 

  16. Um M, Yamauchi J, Kato S, Manley JL (2001) Heterozygous disruption of the TATA-binding protein gene in DT40 cells causes reduced cdc25B phosphatase expression and delayed mitosis. Mol Cell Biol 21:2435–2448. https://doi.org/10.1128/MCB.21.7.2435-2448.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Teves SS, An L, Bhargava-Shah A, et al (2018) A stable mode of bookmarking by TBP recruits RNA polymerase II to mitotic chromosomes. eLife. https://elifesciences.org/articles/35621. Accessed 30 Aug 2018

  18. Sergé A, Bertaux N, Rigneault H, Marguet D (2008) Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat Methods 5:687–694. https://doi.org/10.1038/nmeth.1233

    Article  PubMed  Google Scholar 

  19. Normanno D, Boudarène L, Dugast-Darzacq C et al (2015) Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher. Nat Commun 6:7357–7357. https://doi.org/10.1038/ncomms8357

    Article  PubMed  Google Scholar 

  20. Hansen AS, Woringer M, Grimm JB et al (2018) Robust model-based analysis of single-particle tracking experiments with Spot-On. eLife 7. https://doi.org/10.7554/elife.33125

  21. Chen J, Zhang Z, Li L et al (2014) Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156:1274–1285. https://doi.org/10.1016/j.cell.2014.01.062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila S. Teves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kwan, J.Z.J., Nguyen, T.F., Teves, S.S. (2019). Visualizing Transcription Factor Binding on Mitotic Chromosomes Using Single-Molecule Live-Cell Imaging. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 2038. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9674-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9674-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9673-5

  • Online ISBN: 978-1-4939-9674-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics