Skip to main content

Imaging Single mRNA Molecules in Mammalian Cells Using an Optimized MS2-MCP System

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2038))

Abstract

Visualization of single mRNAs in their native cellular environment provides key information to study gene expression regulation. This fundamental biological question triggered the development of the MS2-MCP (MS2-Capsid Protein) system to tag mRNAs and image their life cycle using widefield fluorescence microscopy. The last two decades have evolved toward improving the qualitative and quantitative characteristics of the MS2-MCP system. Here, we provide a protocol to use the latest versions, MS2V6 and MS2V7, to tag and visualize mRNAs in mammalian cells in culture. The motivation behind engineering MS2V6 and MS2V7 was to overcome a degradation caveat observed in S. cerevisiae with the previous MS2-MCP systems. While for yeast we recommend the use of MS2V6, we found that for live-cell imaging experiments in mammalian cells, the MS2V7 has improved reporter properties.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bertrand E, Chartrand P, Schaefer M et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445

    Article  CAS  Google Scholar 

  2. Tutucci E, Livingston NM, Singer RH et al (2018) Imaging mRNA in vivo, from birth to death. Annu Rev Biophys 47:85–106

    Article  CAS  Google Scholar 

  3. Vera M, Biswas J, Senecal A et al (2016) Single-cell and single-molecule analysis of gene expression regulation. Annu Rev Genet 50:267–291

    Article  CAS  Google Scholar 

  4. Garcia JF, Parker R (2015) MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. RNA 21:1393–1395

    Article  CAS  Google Scholar 

  5. Garcia JF, Parker R (2016) Ubiquitous accumulation of 3′ mRNA decay fragments in Saccharomyces cerevisiae mRNAs with chromosomally integrated MS2 arrays. RNA 22:657–659

    Article  CAS  Google Scholar 

  6. Haimovich G, Zabezhinsky D, Haas B et al (2016) Use of the MS2 aptamer and coat protein for RNA localization in yeast: a response to “MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system”. RNA 22:660–666

    Article  CAS  Google Scholar 

  7. Heinrich S, Sidler CL, Azzalin CM et al (2017) Stem-loop RNA labeling can affect nuclear and cytoplasmic mRNA processing. RNA 23:134–141

    Article  CAS  Google Scholar 

  8. Tutucci E, Vera M, Biswas J et al (2018) An improved MS2 system for accurate reporting of the mRNA life cycle. Nat Methods 15:81–89

    Article  CAS  Google Scholar 

  9. Wu B, Miskolci V, Sato H et al (2015) Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev 29:876–886

    Article  CAS  Google Scholar 

  10. Tutucci E, Vera M, Singer RH (2018) Single-mRNA detection in living S. cerevisiae using a re-engineered MS2 system. Nat Protoc 13(10):2268–2296

    Article  CAS  Google Scholar 

  11. Balakrishnan K, De Maio A (2006) Heat shock protein 70 binds its own messenger ribonucleic acid as part of a gene expression self-limiting mechanism. Cell Stress Chaperones 11:44–50

    Article  CAS  Google Scholar 

  12. Femino AM, Fay FS, Fogarty K et al (1998) Visualization of single RNA transcripts in situ. Science 280:585–590

    Article  CAS  Google Scholar 

  13. Lionnet T, Czaplinski K, Darzacq X et al (2011) A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods 8:165–170

    Article  CAS  Google Scholar 

  14. Mueller F, Senecal A, Tantale K et al (2013) FISH-quant: automatic counting of transcripts in 3D FISH images. Nat Methods 10:277–278

    Article  CAS  Google Scholar 

  15. Wu B, Eliscovich C, Yoon YJ et al (2016) Translation dynamics of single mRNAs in live cells and neurons. Science 352:1430–1435

    Article  CAS  Google Scholar 

  16. Tanenbaum ME, Gilbert LA, Qi LS et al (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646

    Article  CAS  Google Scholar 

  17. Pichon X, Bastide A, Safieddine A et al (2016) Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells. J Cell Biol 214:769–781

    Article  CAS  Google Scholar 

  18. Pichon X, Lagha M, Mueller F et al (2018) A growing toolbox to image gene expression in single cells: sensitive approaches for demanding challenges. Mol Cell 71:468–480

    Article  CAS  Google Scholar 

  19. Eliscovich C, Shenoy SM, Singer RH (2017) Imaging mRNA and protein interactions within neurons. Proc Natl Acad Sci U S A 114:E1875–E1884

    Article  CAS  Google Scholar 

  20. Grimm JB, English BP, Chen J et al (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244–250, 243 p following 250

    Article  CAS  Google Scholar 

  21. Katz ZB, Wells AL, Park HY et al (2012) Beta-actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev 26:1885–1890

    Article  CAS  Google Scholar 

  22. Halstead JM, Lionnet T, Wilbertz JH et al (2015) Translation. An RNA biosensor for imaging the first round of translation from single cells to living animals. Science 347:1367–1671

    Article  CAS  Google Scholar 

  23. Adivarahan S, Livingston N, Nicholson B et al (2018) Spatial organization of single mRNPs at different stages of the gene expression pathway. Mol Cell 72:727–738 e725

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Xihua Meng and Lydia Tesfa (Grant P30CA013330) for technical help. Support was provided by National Institutes of Health Grants R01GM057071 to R.H.S. and R21AG055083 to M.V. and by the Swiss National Science Foundation for Fellowships P2GEP3_155692 and P300PA_164717 to E.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Singer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vera, M., Tutucci, E., Singer, R.H. (2019). Imaging Single mRNA Molecules in Mammalian Cells Using an Optimized MS2-MCP System. In: Shav-Tal, Y. (eds) Imaging Gene Expression. Methods in Molecular Biology, vol 2038. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9674-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9674-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9673-5

  • Online ISBN: 978-1-4939-9674-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics