Skip to main content

Assessing Oligonucleotide Binding to Double-Stranded DNA

  • Protocol
  • First Online:
Oligonucleotide-Based Therapies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2036))

Abstract

Sequence-specific targeting of double-stranded DNA (dsDNA) using synthetic oligonucleotides (ONs) has been under investigation in different therapeutic approaches. Several methods can be used to evaluate ONs effect and binding capacity to their target sequence. Here we describe some of the methods, which have been frequently used for assessing ONs binding to dsDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith CIE, Zain R (2019) Therapeutic oligonucleotides: state of the art. Annu Rev Pharmacol Toxicol 59:605–630. https://doi.org/10.1146/annurev-pharmtox-010818-021050

    Article  CAS  PubMed  Google Scholar 

  2. Lundin KE, Gissberg O, Smith CI (2015) Oligonucleotide therapies: the past and the present. Hum Gene Ther 26(8):475–485. https://doi.org/10.1089/hum.2015.070. Epub 2015 Aug 1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Crooke ST (2004) Antisense strategies. Curr Mol Med 4(5):465–487

    Article  CAS  PubMed  Google Scholar 

  4. Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12(5):329–340. https://doi.org/10.1038/nrg2968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goodchild J (2011) Therapeutic oligonucleotides. Methods Mol Biol 764:1–15. https://doi.org/10.1007/1978-1001-61779-61188-61778_61771

    Article  CAS  PubMed  Google Scholar 

  6. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140. https://doi.org/10.1038/nrd3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238(4827):645–650

    Article  CAS  PubMed  Google Scholar 

  8. Pauling L, Corey RB (1953) A proposed structure for the nucleic acids. Proc Natl Acad Sci U S A 39(2):84–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bacolla A, Wells RD (2009) Non-B DNA conformations as determinants of mutagenesis and human disease. Mol Carcinog 48(4):273–285. https://doi.org/10.1002/mc.20507

    Article  CAS  PubMed  Google Scholar 

  10. Bergquist H, Rocha CS, Alvarez-Asencio R, Nguyen CH, Rutland MW, Smith CI, Good L, Nielsen PE, Zain R (2016) Disruption of higher order DNA structures in Friedreich’s ataxia (GAA)n repeats by PNA or LNA targeting. PLoS One 11(11):e0165788. https://doi.org/10.1371/journal.pone.0165788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE (2014) Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 42(1):3–19. https://doi.org/10.1093/nar/gkt990

    Article  CAS  PubMed  Google Scholar 

  12. Pingoud A, Jeltsch A (2001) Structure and function of type II restriction endonucleases. Nucleic Acids Res 29(18):3705–3727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nielsen PE, Egholm M, Berg RH, Buchardt O (1993) Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res 21(2):197–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaghloul EM, Gissberg O, Moreno PMD, Siggens L, Hallbrink M, Jorgensen AS, Ekwall K, Zain R, Wengel J, Lundin KE, Smith CIE (2017) CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression. Nucleic Acids Res 45(9):5153–5169. https://doi.org/10.1093/nar/gkx111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vogt VM (1973) Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem 33(1):192–200

    Article  CAS  PubMed  Google Scholar 

  16. Evans T, Efstratiadis A (1986) Sequence-dependent S1 nuclease hypersensitivity of a heteronomous DNA duplex. J Biol Chem 261(31):14771–14780

    CAS  PubMed  Google Scholar 

  17. Balagurumoorthy P, Adelstein SJ, Kassis AI (2008) Method to eliminate linear DNA from mixture containing nicked circular, supercoiled, and linear plasmid DNA. Anal Biochem 381(1):172–174. https://doi.org/10.1016/j.ab.2008.06.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pabon-Martinez YV, Xu Y, Villa A, Lundin KE, Geny S, Nguyen CH, Pedersen EB, Jorgensen PT, Wengel J, Nilsson L, Smith CIE, Zain R (2017) LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Sci Rep 7(1):11043. https://doi.org/10.1038/s41598-017-09147-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hartono YD, Pabon-Martinez YV, Uyar A, Wengel J, Lundin KE, Zain R, Smith CIE, Nilsson L, Villa A (2017) Role of pseudoisocytidine tautomerization in triplex-forming oligonucleotides: in silico and in vitro studies. ACS Omega 2(5):2165–2177. https://doi.org/10.1021/acsomega.7b00347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Helene C (1991) The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides. Anticancer Drug Des 6(6):569–584

    CAS  PubMed  Google Scholar 

  21. Knauert MP, Glazer PM (2001) Triplex forming oligonucleotides: sequence-specific tools for gene targeting. Hum Mol Genet 10(20):2243–2251

    Article  CAS  PubMed  Google Scholar 

  22. Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36(16):5123–5138. https://doi.org/10.1093/nar/gkn493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaid A, Sun JS, Nguyen CH, Bisagni E, Garestier T, Grierson DS, Zain R (2004) Triple-helix directed cleavage of double-stranded DNA by benzoquinoquinoxaline-1,10-phenanthroline conjugates. Chembiochem 5(11):1550–1557. https://doi.org/10.1002/cbic.200400074

    Article  CAS  PubMed  Google Scholar 

  24. Escude C, Nguyen CH, Kukreti S, Janin Y, Sun JS, Bisagni E, Garestier T, Helene C (1998) Rational design of a triple helix-specific intercalating ligand. Proc Natl Acad Sci U S A 95(7):3591–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zain R, Marchand C, Sun J, Nguyen CH, Bisagni E, Garestier T, Helene C (1999) Design of a triple-helix-specific cleaving reagent. Chem Biol 6(11):771–777

    Article  CAS  PubMed  Google Scholar 

  26. Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of double-stranded DNA by “tail-clamp” peptide nucleic acid. Biochemistry 42(47):13987–13995. https://doi.org/10.1021/bi0351918

    Article  CAS  PubMed  Google Scholar 

  27. Moreno PM, Geny S, Pabon YV, Bergquist H, Zaghloul EM, Rocha CS, Oprea II, Bestas B, Andaloussi SE, Jorgensen PT, Pedersen EB, Lundin KE, Zain R, Wengel J, Smith CI (2013) Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Res 41(5):3257–3273. https://doi.org/10.1093/nar/gkt007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kuśmierek JT, Singer B (1982) Chloroacetaldehyde-treated ribo- and deoxyribopolynucleotides. 1. Reaction products. Biochemistry 21(22):5717. https://doi.org/10.1021/bi00265a050

    Article  PubMed  Google Scholar 

  29. Zianni M, Tessanne K, Merighi M, Laguna R, Tabita FR (2006) Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. J Biomol Tech 17(2):103

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union’s Horizon 2020 under the Marie Skłodowska-Curie grant agreement No 721613, the Swedish Research Council, the Stockholm County Council, Hjärnfonden, and Vinnova/SweLife.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Negin Mozafari or Tea Umek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mozafari, N., Umek, T. (2019). Assessing Oligonucleotide Binding to Double-Stranded DNA. In: Gissberg, O., Zain, R., Lundin, K. (eds) Oligonucleotide-Based Therapies. Methods in Molecular Biology, vol 2036. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9670-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9670-4_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9669-8

  • Online ISBN: 978-1-4939-9670-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics