Skip to main content

In Cell NMR Spectroscopy: Investigation of G-Quadruplex Structures Inside Living Xenopus laevis Oocytes

  • Protocol
  • First Online:
G-Quadruplex Nucleic Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2035))

Abstract

G-quadruplexes are inherently polymorphic nucleic acid structures. Their folding topology depends on the nucleic acid primary sequence and on physical–chemical environmental factors. Hence, it remains unclear if a G-quadruplex topology determined in the test tube (in vitro) will also form in vivo. Characterization of G-quadruplexes in their native environment has been proposed as an efficient strategy to tackle this issue. So far, characterization of G-quadruplex structures in living cells has relied exclusively on the use of Xenopus laevis oocytes as a eukaryotic cell model system. Here, we describe the protocol for the preparation of X. laevis oocytes for studies of G-quadruplexes as well as other nucleic acids motifs under native conditions using in-cell NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein G B1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci U S A 103:11904–11909

    Article  CAS  Google Scholar 

  2. Serber Z, Selenko P, Hansel R, Reckel S, Lohr F, Ferrell JE Jr, Wagner G, Dotsch V (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1:2701–2709

    Article  CAS  Google Scholar 

  3. Hansel R, Foldynova-Trantirkova S, Lohr F, Buck J, Bongartz E, Bamberg E, Schwalbe H, Dotsch V, Trantirek L (2009) Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J Am Chem Soc 131:15761–15768

    Article  Google Scholar 

  4. Bao HL, Ishizuka T, Sakamoto T, Fujimoto K, Uechi T, Kenmochi N, Xu Y (2017) Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res 45:5501–5511

    Article  CAS  Google Scholar 

  5. Salgado GF, Cazenave C, Kerkour A, Mergny JL (2015) G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy. Chem Sci 6:3314–3320

    Article  CAS  Google Scholar 

  6. Hansel R, Foldynova-Trantirkova S, Dotsch V, Trantirek L (2013) Investigation of quadruplex structure under physiological conditions using in-cell NMR. Top Curr Chem 330:47–65

    Article  Google Scholar 

  7. Hansel R, Luh LM, Corbeski I, Trantirek L, Dotsch V (2014) In-cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed Engl 53:10300–10314

    Article  Google Scholar 

  8. Hansel R, Lohr F, Foldynova-Trantirkova S, Bamberg E, Trantirek L, Dotsch V (2011) The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. Nucleic Acids Res 39:5768–5775

    Article  Google Scholar 

  9. Azarkh M, Okle O, Singh V, Seemann IT, Hartig JS, Dietrich DR, Drescher M (2011) Long-range distance determination in a DNA model system inside Xenopus laevis oocytes by in-cell spin-label EPR. Chembiochem 12:1992–1995

    Article  CAS  Google Scholar 

  10. Krstic I, Hansel R, Romainczyk O, Engels JW, Dotsch V, Prisner TF (2011) Long-range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 50:5070–5074

    Article  CAS  Google Scholar 

  11. Yamaoki Y, Kiyoishi A, Miyake M, Kano F, Murata M, Nagata T, Katahira M (2018) The first successful observation of in-cell NMR signals of DNA and RNA in living human cells. Phys Chem Chem Phys 20:2982–2985

    Article  CAS  Google Scholar 

  12. Dzatko S, Krafcikova M, Hansel-Hertsch R, Fessl T, Fiala R, Loja T, Krafcik D, Mergny JL, Foldynova-Trantirkova S, Trantirek L (2018) Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew Chem Int Ed Engl 57:2165–2169

    Article  CAS  Google Scholar 

  13. Thongwichian R, Selenko P (2012) In-cell NMR in Xenopus laevis oocytes. Methods Mol Biol 895:33–41

    Article  CAS  Google Scholar 

  14. Bodart JF, Wieruszeski JM, Amniai L, Leroy A, Landrieu I, Rousseau-Lescuyer A, Vilain JP, Lippens G (2008) NMR observation of Tau in Xenopus oocytes. J Magn Reson 192:252–257

    Article  CAS  Google Scholar 

  15. Selenko P, Wagner G (2007) Looking into live cells with in-cell NMR spectroscopy. J Struct Biol 158:244–253

    Article  CAS  Google Scholar 

  16. Crane RF, Ruderman JV (2006) Using Xenopus oocyte extracts to study signal transduction. Methods Mol Biol 322:435–443

    Article  CAS  Google Scholar 

  17. Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36:581–605

    Article  CAS  Google Scholar 

  18. Sakai T, Tochio H, Tenno T, Ito Y, Kokubo T, Hiroaki H, Shirakawa M (2006) In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes. J Biomol NMR 36:179–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Czech Science Foundation (17-12075S), European Regional Development Fund (SYMBIT: CZ.02.1.01/0.0/0.0/15_003/0000477), Horizon 2020 Program of the EU (iNEXT: grant agreement 653706), and from the MEYS CR (CEITEC 2020 LQ1601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lukas Trantirek or Silvie Foldynova-Trantirkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Krafcikova, M., Hänsel-Hertsch, R., Trantirek, L., Foldynova-Trantirkova, S. (2019). In Cell NMR Spectroscopy: Investigation of G-Quadruplex Structures Inside Living Xenopus laevis Oocytes. In: Yang, D., Lin, C. (eds) G-Quadruplex Nucleic Acids. Methods in Molecular Biology, vol 2035. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9666-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9666-7_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9665-0

  • Online ISBN: 978-1-4939-9666-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics