Advertisement

High-pH Reversed-Phase Pre-Fractionation for In-Depth Shotgun Proteomics

  • Ning Chen
  • Mingwei Liu
  • Jun Qin
  • Wei SunEmail author
  • Fuchu HeEmail author
Protocol
Part of the Neuromethods book series (NM, volume 146)

Abstract

Two-dimensional LC-MS-based proteomics is a powerful strategy for high-throughput protein identification and quantification. The combination of high-pH reversed-phase fractionation with low-pH LC-MS analysis is the method of choice, because it provides the optimal separation efficiency and deep protein coverage. In this chapter, we illustrate the protocols of HPLC-based and the tip-based high-pH reversed-phase chromatographic fractionation of peptide mixtures, in which the HPLC-based reversed-phase fractionation provides higher resolving power while the tip-based high-pH reversed-phase fractionation is simple, parallelizable, and suitable for limited amount of biological samples.

Keywords

High pH Reverse phase Fractionation Liquid chromatography Two-dimensional chromatography Mass spectrometry Proteomics 

References

  1. 1.
    Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906CrossRefGoogle Scholar
  2. 2.
    Di Palma S, Hennrich ML, Heck AJ, Mohammed S (2012) Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J Proteome 75:3791–3813CrossRefGoogle Scholar
  3. 3.
    Horvatovich P, Hoekman B, Govorukhina N, Bischoff R (2010) Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples. J Sep Sci 33:1421–1437CrossRefGoogle Scholar
  4. 4.
    Lee H, Mun DG, So JE, Bae J, Kim H, Masselon C, Lee SW (2016) Efficient exploitation of separation space in two-dimensional liquid chromatography system for comprehensive and efficient proteomic analyses. Anal Chem 88:11734–11741CrossRefGoogle Scholar
  5. 5.
    Sandra K, Moshir M, D'Hondt F, Tuytten R, Verleysen K, Kas K, Francois I, Sandra P (2009) Highly efficient peptide separations in proteomics. Part 2: bi- and multidimensional liquid-based separation techniques. J Chromatogr B Analyt Technol Biomed Life Sci 877:1019–1039CrossRefGoogle Scholar
  6. 6.
    Sandra K, Moshir M, D'Hondt F, Verleysen K, Kas K, Sandra P (2008) Highly efficient peptide separations in proteomics part 1. Unidimensional high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 866:48–63CrossRefGoogle Scholar
  7. 7.
    Mitulovic G, Mechtler K (2006) HPLC techniques for proteomics analysis--a short overview of latest developments. Brief Funct Genomic Proteomic 5:249–260CrossRefGoogle Scholar
  8. 8.
    Gilar M, Olivova P, Daly AE, Gebler JC (2005) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28:1694–1703CrossRefGoogle Scholar
  9. 9.
    Gilar M, Olivova P, Daly AE, Gebler JC (2005) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77:6426–6434CrossRefGoogle Scholar
  10. 10.
    Dowell JA, Frost DC, Zhang J, Li L (2008) Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 80:6715–6723CrossRefGoogle Scholar
  11. 11.
    Yang F, Shen Y, Camp DG 2nd, Smith RD (2012) High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev Proteomics 9:129–134CrossRefGoogle Scholar
  12. 12.
    Chen Z, Wen B, Wang Q, Tong W, Guo J, Bai X, Zhao J, Sun Y, Tang Q, Lin Z, Lin L, Liu S (2013) Quantitative proteomics reveals the temperature-dependent proteins encoded by a series of cluster genes in thermoanaerobacter tengcongensis. Mol Cell Proteomics 12:2266–2277CrossRefGoogle Scholar
  13. 13.
    O'Brien DP, Timms JF (2014) Employing TMT quantification in a shotgun-MS platform. Methods Mol Biol 1156:187–199CrossRefGoogle Scholar
  14. 14.
    Ding C, Jiang J, Wei J, Liu W, Zhang W, Liu M, Fu T, Lu T, Song L, Ying W, Chang C, Zhang Y, Ma J, Wei L, Malovannaya A, Jia L, Zhen B, Wang Y, He F, Qian X, Qin J (2013) A fast workflow for identification and quantification of proteomes. Mol Cell Proteomics 12:2370–2380CrossRefGoogle Scholar
  15. 15.
    Farrell A, Mittermayr S, Morrissey B, Mc Loughlin N, Navas Iglesias N, Marison IW, Bones J (2015) Quantitative host cell protein analysis using two dimensional data independent LC-MS(E). Anal Chem 87:9186–9193CrossRefGoogle Scholar
  16. 16.
    Chen W, Wang S, Adhikari S, Deng Z, Wang L, Chen L, Ke M, Yang P, Tian R (2016) Simple and integrated Spintip-based technology applied for deep proteome profiling. Anal Chem 88:4864–4871CrossRefGoogle Scholar
  17. 17.
    Dimayacyac-Esleta BR, Tsai CF, Kitata RB, Lin PY, Choong WK, Lin TD, Wang YT, Weng SH, Yang PC, Arco SD, Sung TY, Chen YJ (2015) Rapid high-pH reverse phase StageTip for sensitive small-scale membrane proteomic profiling. Anal Chem 87:12016–12023CrossRefGoogle Scholar
  18. 18.
    Wang H, Sun S, Zhang Y, Chen S, Liu P, Liu B (2015) An off-line high pH reversed-phase fractionation and nano-liquid chromatography-mass spectrometry method for global proteomic profiling of cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 974:90–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences BeijingBeijing Institute of LifeomicsBeijingChina

Personalised recommendations