Isolation of Synapse Sub-Domains by Subcellular Fractionation Using Sucrose Density Gradient Centrifugation: Purification of the Synaptosome, Synaptic Plasma Membrane, Postsynaptic Density, Synaptic Membrane Raft, and Postsynaptic Density Lattice

  • Tatsuo SuzukiEmail author
  • Yoshinori Shirai
  • Weidong Li
Part of the Neuromethods book series (NM, volume 146)


A protocol presents a purification of postsynaptic density (PSD), from rat brain by subcellular fractionation using solubilization of membrane with Triton X-100 and sucrose density centrifugation. The protocol also includes purification of other synapse sub-domains such as synaptosome, synaptic plasma membrane (SPM), synaptic membrane raft, PSD lattice, P1 (nuclei and cell debris), P2 (crude mitochondria fraction), S3 (soluble fraction), and P3 (microsomal fraction). The PSD purification method presented in this text is the one established by Siekevitz group. The PSDs obtained by this method are mainly excitatory type I PSDs. These methods are useful for biochemical analyses such as identification of proteins associated with these sub-domains by proteomics methods and western blotting, and morphological analyses at the electron microscopic level. The purification protocol for the synaptic membrane raft using sucrose gradient ultracentrifugation is a useful means by which to analyze the relationship between the PSD and synaptic membrane raft by isolating both preparations simultaneously.


Synaptosome Synaptic plasma membrane Postsynaptic density Postsynaptic membrane raft PSD lattice Subcellular fractionation Detergent-insoluble cytoskeleton Detergent-insoluble membrane 



The author learned the method of PSD purification in the Philip Siekevitz laboratory, Rockefeller University, New York. The author heartily thanks Dr. Philip Siekevitz and Marie LeDoux for their instruction.


  1. 1.
    Somerville RA, Merz PA, Carp RI (1984) The effects of detergents on the composition of postsynaptic densities. J Neurochem 43(1):184–191CrossRefGoogle Scholar
  2. 2.
    Cohen RS et al (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol 74(1):181–203CrossRefGoogle Scholar
  3. 3.
    Wu K, Carlin R, Siekevitz P (1986) Binding of L-[3H]glutamate to fresh or frozen synaptic membrane and postsynaptic density fractions isolated from cerebral cortex and cerebellum of fresh or frozen canine brain. J Neurochem 46(3):831–841CrossRefGoogle Scholar
  4. 4.
    Carlin RK et al (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86(3):831–845CrossRefGoogle Scholar
  5. 5.
    Kim TW, Wu K, Black IB (1995) Deficiency of brain synaptic dystrophin in human Duchenne muscular dystrophy. Ann Neurol 38(3):446–449CrossRefGoogle Scholar
  6. 6.
    Hahn CG et al (2009) The post-synaptic density of human postmortem brain tissues: an experimental study paradigm for neuropsychiatric illnesses. PLoS One 4(4):e5251CrossRefGoogle Scholar
  7. 7.
    Suzuki T et al (1993) Characterization of protein kinase C activities in postsynaptic density fractions prepared from cerebral cortex, hippocampus, and cerebellum. Brain Res 619(1–2):69–75CrossRefGoogle Scholar
  8. 8.
    Kim TW et al (1992) Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 89(23):11642–11644CrossRefGoogle Scholar
  9. 9.
    Wu K, Black IB (1987) Regulation of molecular components of the synapse in the developing and adult rat superior cervical ganglion. Proc Natl Acad Sci U S A 84(23):8687–8691CrossRefGoogle Scholar
  10. 10.
    Wu K, Siekevitz P (1988) Neurochemical characteristics of a postsynaptic density fraction isolated from adult canine hippocampus. Brain Res 457(1):98–112CrossRefGoogle Scholar
  11. 11.
    Suzuki T et al (1997) Excitable membranes and synaptic transmission: postsynaptic mechanisms. Localization of alpha-internexin in the postsynaptic density of the rat brain. Brain Res 765(1):74–80CrossRefGoogle Scholar
  12. 12.
    Matus A et al (1980) Brain postsynaptic densities: the relationship to glial and neuronal filaments. J Cell Biol 87(2 Pt 1):346–359CrossRefGoogle Scholar
  13. 13.
    Suzuki T et al (2007) Characterization of mRNA species that are associated with postsynaptic density fraction by gene chip microarray analysis. Neurosci Res 57(1):61–85CrossRefGoogle Scholar
  14. 14.
    Cotman CW, Taylor D (1972) Isolation and structural studies on synaptic complexes from rat brain. J Cell Biol 55(3):696–711CrossRefGoogle Scholar
  15. 15.
    Nieto-Sampedro M, Bussineau CM, Cotman CW (1981) Optimal concentration of iodonitrotetrazolium for the isolation of junctional fractions from rat brain. Neurochem Res 6(3):307–320CrossRefGoogle Scholar
  16. 16.
    Cotman CW et al (1974) Isolation of postsynaptic densities from rat brain. J Cell Biol 63(2 Pt 1):441–455CrossRefGoogle Scholar
  17. 17.
    Kelly PT, Montgomery PR (1982) Subcellular localization of the 52,000 molecular weight major postsynaptic density protein. Brain Res 233(2):265–286CrossRefGoogle Scholar
  18. 18.
    Kelly PT, Cotman CW (1976) Intermolecular disulfide bonds at central nervous system synaptic junctions. Biochem Biophys Res Commun 73(4):858–864CrossRefGoogle Scholar
  19. 19.
    Kelly PT, Cotman CW (1981) Developmental changes in morphology and molecular composition of isolated synaptic junctional structures. Brain Res 206(2):251–257CrossRefGoogle Scholar
  20. 20.
    Lai SL et al (1999) Interprotein disulfide bonds formed during isolation process tighten the structure of the postsynaptic density. J Neurochem 73(5):2130–2138PubMedGoogle Scholar
  21. 21.
    Sui CW, Chow WY, Chang YC (2000) Effects of disulfide bonds formed during isolation process on the structure of the postsynaptic density. Brain Res 873(2):268–273CrossRefGoogle Scholar
  22. 22.
    Suzuki T et al (1994) Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein kinase II into postsynaptic density after decapitation. J Neurochem 63(4):1529–1537CrossRefGoogle Scholar
  23. 23.
    Carlin RK, Grab DJ, Siekevitz P (1982) Postmortem accumulation of tubulin in postsynaptic density preparations. J Neurochem 38(1):94–100CrossRefGoogle Scholar
  24. 24.
    Cheng HH et al (2009) Cold-induced exodus of postsynaptic proteins from dendritic spines. J Neurosci Res 87(2):460–469CrossRefGoogle Scholar
  25. 25.
    Li X et al (2007) Two pools of Triton X-100-insoluble GABA(A) receptors are present in the brain, one associated to lipid rafts and another one to the post-synaptic GABAergic complex. J Neurochem 102(4):1329–1345CrossRefGoogle Scholar
  26. 26.
    Ratner N, Mahler H (1983) Isolation of postsynaptic densities retaining their membrane attachment. Neuroscience 9(3):631–644CrossRefGoogle Scholar
  27. 27.
    Cho KO, Hunt CA, Kennedy MB (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9(5):929–942CrossRefGoogle Scholar
  28. 28.
    Walikonis RS et al (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci 20(11):4069–4080CrossRefGoogle Scholar
  29. 29.
    Murphy JA, Jensen ON, Walikonis RS (2006) BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses. Brain Res 1120(1):35–45CrossRefGoogle Scholar
  30. 30.
    Suzuki T (2002) Lipid rafts at postsynaptic sites: distribution, function and linkage to postsynaptic density. Neurosci Res 44(1):1–9CrossRefGoogle Scholar
  31. 31.
    Blomberg F, Cohen RS, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J Cell Biol 74(1):204–225CrossRefGoogle Scholar
  32. 32.
    Matus AI, Taff-Jones DH (1978) Morphology and molecular composition of isolated postsynaptic junctional structures. Proc R Soc Lond B Biol Sci 203(1151):135–151CrossRefGoogle Scholar
  33. 33.
    Gurd JW, Gordon-Weeks P, Evans WH (1982) Biochemical and morphological comparison of postsynaptic densities prepared from rat, hamster, and monkey brains by phase partitioning. J Neurochem 39(4):1117–1124CrossRefGoogle Scholar
  34. 34.
    Matus A (1981) The postsynaptic density. Trends Neurosci 4:51–53CrossRefGoogle Scholar
  35. 35.
    Garner AE, Smith DA, Hooper NM (2008) Visualization of detergent solubilization of membranes: implications for the isolation of rafts. Biophys J 94(4):1326–1340CrossRefGoogle Scholar
  36. 36.
    Shogomori H, Brown DA (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly. Biol Chem 384(9):1259–1263CrossRefGoogle Scholar
  37. 37.
    Phillips GR et al (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32(1):63–77CrossRefGoogle Scholar
  38. 38.
    Suzuki T, Yao W-D (2014) Molecular and structural bases for postsynaptic signal processing: interaction between postsynaptic density and postsynaptic membrane rafts. J Neuro-Oncol 2:1–14Google Scholar
  39. 39.
    Pike LJ (2006) Rafts defined: a report on the Keystone Symposium on lipid rafts and cell function. J Lipid Res 47(7):1597–1598CrossRefGoogle Scholar
  40. 40.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572CrossRefGoogle Scholar
  41. 41.
    Suzuki T et al (2011) Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. J Neurochem 119(1):64–77CrossRefGoogle Scholar
  42. 42.
    Liu Q, Yao W-D, Suzuki T (2013) Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes. J Neurogenet 27(1–2):43–58CrossRefGoogle Scholar
  43. 43.
    Zhao L, Sakagami H, Suzuki T (2014) Detergent-dependent separation of postsynaptic density, membrane rafts and other subsynaptic structures from the synaptic plasma membrane of rat forebrain. J Neurochem 131(2):147–162CrossRefGoogle Scholar
  44. 44.
    Dosemeci A et al (2016) The postsynaptic density: there is more than meets the eye. Front Synaptic Neurosci 8:23CrossRefGoogle Scholar
  45. 45.
    Matus AI, Walters BB (1975) Ultrastructure of the synaptic junctional lattice isolated from mammalian brain. J Neurocytol 4(3):369–375CrossRefGoogle Scholar
  46. 46.
    Suzuki T et al (2017) Protein components of postsynaptic density lattice, a backbone structure for type I excitatory synapses. J Neurochem 144(4):390–407. in pressCrossRefGoogle Scholar
  47. 47.
    Suzuki T et al (2018) Protein components of post-synaptic density lattice, a backbone structure for type I excitatory synapses. J Neurochem 144(4):390–407CrossRefGoogle Scholar
  48. 48.
    Chang HW, Bock E (1980) Pitfalls in the use of commercial nonionic detergents for the solubilization of integral membrane proteins: sulfhydryl oxidizing contaminants and their elimination. Anal Biochem 104(1):112–117CrossRefGoogle Scholar
  49. 49.
    Adam RM et al (2008) Rapid preparation of nuclei-depleted detergent-resistant membrane fractions suitable for proteomics analysis. BMC Cell Biol 9:30CrossRefGoogle Scholar
  50. 50.
    Fried RC, Blaustein MP (1978) Retrieval and recycling of synaptic vesicle membrane in pinched-off nerve terminals (synaptosomes). J Cell Biol 78(3):685–700CrossRefGoogle Scholar
  51. 51.
    Warburg O, Christian W (1942) Isolierung and Kristallisation des Garungsferment. Biochem Z 310:384–421Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular and Cellular Physiology, Institute of MedicineShinshu University Academic AssemblyMatsumotoJapan
  2. 2.Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Institute of psychology and Behavioral SciencesShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge ResearchShinshu UniversityMatsumotoJapan

Personalised recommendations