Advertisement

Neuropeptidomics of the Mammalian Brain

  • Fang Xie
  • Krishna D. B. Anapindi
  • Elena V. Romanova
  • Jonathan V. SweedlerEmail author
Protocol
Part of the Neuromethods book series (NM, volume 146)

Abstract

A suite of bioactive peptides orchestrates a variety of cellular interactions in the mammalian brain. The bioanalytical strategy known as neuropeptidomics evolved from the quest to globally characterize these important cell–cell signaling peptides. The goal of a neuropeptidomics experiment is to characterize the peptides present in an intact brain, brain region, or even an individual neuron. A neuropeptidomics measurement needs to contend with the large dynamic range and low abundance of the neuropeptides that are present within a background of peptides resulting from the postmortem degradation of high-level ubiquitous proteins. The core components of a successful effort include effective tissue sampling and stabilization, sensitive and robust peptide characterization, and comprehensive data analysis and interpretation. Mass spectrometry (MS) has become the central analytical approach for high-throughput characterization of the brain peptidome because of its capability to detect, identify, and quantify known and unknown peptides with high confidence. Robust fractionation techniques, such as two-dimensional liquid chromatography (LC), are commonly used in conjunction with MS to enhance investigation of the peptidome. Identification and characterization of peptides is more complex when neuropeptide prohormone genes have not been annotated in an unbiased manner. This chapter outlines techniques and describes protocols for three different experimental designs that combine MS with LC, each aimed at high-throughput discovery of peptides in brain tissue. Further, we describe the currently available bioinformatics tools for automatic query of the experimental data against existing protein databases, manual retrieval of structural information from raw MS data, and label-free quantitation.

Keywords

Neuropeptidome Hormone Neuropeptide Bioinformatics Liquid chromatography Mass spectrometry 

Notes

Acknowledgments

This work was supported by Award Number P30 DA018310 from the National Institute on Drug Abuse (NIDA), and by Award No. NS031609 from the National Institute of Neurological Disorders and Stroke (NINDS). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

References

  1. 1.
    Li L, Sweedler JV (2008) Peptides in the brain: mass spectrometry-based measurement approaches and challenges. Annu Rev Anal Chem 1(1):451–483.  https://doi.org/10.1146/annurev.anchem.1.031207.113053CrossRefGoogle Scholar
  2. 2.
    Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L (2008) Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J Sep Sci 31(3):427–445.  https://doi.org/10.1002/jssc.200700450CrossRefPubMedGoogle Scholar
  3. 3.
    Lee JE, Zamdborg L, Southey BR, Atkins N, Mitchell JW, Li M, Gillette MU, Kelleher NL, Sweedler JV (2013) Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus. J Proteome Res 12:585–593.  https://doi.org/10.1021/pr300605pCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhang G, Vilim FS, Liu D-D, Romanova EV, Yu K, Yuan W-D, Xiao H, Hummon AB, Chen T-T, Alexeeva V, Yin S-Y, Chen S-A, Cropper EC, Sweedler JV, Weiss KR, Jing J (2017) Discovery of leucokinin-like neuropeptides that modulate a specific parameter of feeding motor programs in the molluscan model, Aplysia. J Biol Chem 292:18775.  https://doi.org/10.1074/jbc.M117.795450CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rholam M, Fahy C (2009) Processing of peptide and hormone precursors at the dibasic cleavage sites. Cell Mol Life Sci 66:2075–2091.  https://doi.org/10.1007/s00018-009-0007-5CrossRefPubMedGoogle Scholar
  6. 6.
    Clynen E, Baggerman G, Veelaert D, Cerstiaens A, Van der Horst D, Harthoorn L, Derua R, Waelkens E, De Loof A, Schoofs L (2001) Peptidomics of the pars intercerebralis-corpus cardiacum complex of the migratory locust, Locusta migratoria. Eur J Biochem 268(7):1929–1939.  https://doi.org/10.1046/j.1432-1327.2001.02067.xCrossRefPubMedGoogle Scholar
  7. 7.
    Schrader M, Schulz-Knappe P (2001) Peptidomics technologies for human body fluids. Trends Biotechnol 19(10 Suppl):S55–S60.  https://doi.org/10.1016/S0167-7799(01)01800-5CrossRefPubMedGoogle Scholar
  8. 8.
    Verhaert P, Uttenweiler-Joseph S, de Vries M, Loboda A, Ens W, Standing KG (2001) Matrix-assisted laser desorption/ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics. Proteomics 1(1):118–131.  https://doi.org/10.1002/1615-9861(200101)1:1<118::AID-PROT118>3.0.CO;2-1CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang J, Xin L, Shan B, Chen W, Xie M, Yuen D, Zhang W, Zhang Z, Lajoie GA, Ma B (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol Cell Proteomics 11:M111.010587.  https://doi.org/10.1074/mcp.M111.010587CrossRefPubMedGoogle Scholar
  10. 10.
    Tillmaand EG, Yang N, Kindt CAC, Romanova EV, Rubakhin SS, Sweedler JV (2015) Peptidomics and secretomics of the mammalian peripheral sensory-motor system. J Am Soc Mass Spectrom 26(12):2051–2061.  https://doi.org/10.1007/s13361-015-1256-1CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yang N, Anapindi KDB, Romanova EV, Rubakhin SS, Sweedler J (2017) Improved identification and quantitation of mature endogenous peptides in the rodent hypothalamus using a rapid conductive sample heating system. Analyst 142:4476.  https://doi.org/10.1039/C7AN01358BCrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yin P, Hou X, Romanova EV, Sweedler JV (2011) Neuropeptidomics: mass spectrometry-based qualitative and quantitative analysis. Methods Mol Biol 789:223–236.  https://doi.org/10.1007/978-1-61779-310-3_14CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sturm RM, Greer T, Woodards N, Gemperline E, Li L (2013) Mass spectrometric evaluation of neuropeptidomic profiles upon heat stabilization treatment of neuroendocrine tissues in crustaceans. J Proteome Res 12(2):743–752.  https://doi.org/10.1021/pr300805fCrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Karlsson O, Kultima K, Wadensten H, Nilsson A, Roman E, Andrén PE, Brittebo EB (2013) Neurotoxin-induced neuropeptide perturbations in striatum of neonatal rats. J Proteome Res 12(4):1678–1690.  https://doi.org/10.1021/pr3010265CrossRefPubMedGoogle Scholar
  15. 15.
    Berezniuk I, Rodriguiz RM, Zee ML, Marcus DJ, Pintar J, Morgan DJ, Wetsel WC, Fricker LD (2017) ProSAAS-derived peptides are regulated by cocaine and are required for sensitization to the locomotor effects of cocaine. J Neurochem 143:268–281.  https://doi.org/10.1111/jnc.14209CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Romanova EV, Rubakhin SS, Ossyra JR, Zombeck JA, Nosek MR, Sweedler JV, Rhodes JS (2015) Differential peptidomics assessment of strain and age differences in mice in response to acute cocaine administration. J Neurochem 135(5):1038–1048.  https://doi.org/10.1111/jnc.13265CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Garden RW, Shippy SA, Li L, Moroz TP, Sweedler JV (1998) Proteolytic processing of the Aplysia egg-laying hormone prohormone. Proc Natl Acad Sci U S A 95(7):3972–3977CrossRefGoogle Scholar
  18. 18.
    Dowell JA, Heyden WV, Li L (2006) Rat neuropeptidomics by LC-MS/MS and MALDI-FTMS: enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC. J Proteome Res 5(12):3368–3375.  https://doi.org/10.1021/pr0603452CrossRefPubMedGoogle Scholar
  19. 19.
    Colgrave ML, Xi L, Lehnert SA, Flatscher-Bader T, Wadensten H, Nilsson A, Andren PE, Wijffels G (2011) Neuropeptide profiling of the bovine hypothalamus: thermal stabilization is an effective tool in inhibiting post-mortem degradation. Proteomics 11(7):1264–1276.  https://doi.org/10.1002/pmic.201000423CrossRefPubMedGoogle Scholar
  20. 20.
    Che FY, Lim J, Pan H, Biswas R, Fricker LD (2005) Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary. Mol Cell Proteomics 4(9):1391–1405.  https://doi.org/10.1074/mcp.T500010-MCP200; [pii]: T500010-MCP200CrossRefPubMedGoogle Scholar
  21. 21.
    Lee JE, Atkins N, Hatcher NG, Zamdborg L, Gillette MU, Sweedler JV, Kelleher NL (2010) Endogenous peptide discovery of the rat circadian clock: a focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry. Mol Cell Proteomics 9(2):285–297.  https://doi.org/10.1074/mcp.M900362-MCP200CrossRefPubMedGoogle Scholar
  22. 22.
    Boonen K, Baggerman G, D'Hertog W, Husson SJ, Overbergh L, Mathieu C, Schoofs L (2007) Neuropeptides of the islets of Langerhans: a peptidomics study. Gen Comp Endocrinol 152(2-3):231–241.  https://doi.org/10.1016/j.ygcen.2007.05.002; [pii]: S0016-6480(07)00174-8CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang X, Scalf M, Berggren TW, Westphall MS, Smith LM (2006) Identification of mammalian cell lines using MALDI-TOF and LC-ESI-MS/MS mass spectrometry. J Am Soc Mass Spectrom 17(4):490–499.  https://doi.org/10.1016/j.jasms.2005.12.007; [pii]: S1044-0305(05)01046-9CrossRefPubMedGoogle Scholar
  24. 24.
    Bora A, Annangudi SP, Millet LJ, Rubakhin SS, Forbes AJ, Kelleher NL, Gillette MU, Sweedler JV (2008) Neuropeptidomics of the supraoptic rat nucleus. J Proteome Res 7(11):4992–5003.  https://doi.org/10.1021/pr800394eCrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hook V, Bandeira N (2015) Neuropeptidomics mass spectrometry reveals signaling networks generated by distinct protease pathways in human systems. J Am Soc Mass Spectrom 26(12):1970–1980.  https://doi.org/10.1007/s13361-015-1251-6CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Su J, Sandor K, Sköld K, Hökfelt T, Svensson CI, Kultima K (2014) Identification and quantification of neuropeptides in naïve mouse spinal cord using mass spectrometry reveals [des-Ser1]-cerebellin as a novel modulator of nociception. J Neurochem 130(2):199–214.  https://doi.org/10.1111/jnc.12730CrossRefPubMedGoogle Scholar
  27. 27.
    Ye H, Wang J, Zhang Z, Jia C, Schmerberg C, Catherman AD, Thomas PM, Kelleher NL, Li L (2015) Defining the neuropeptidome of the spiny lobster Panulirus interruptus brain using a multidimensional mass spectrometry-based platform. J Proteome Res 14(11):4776–4791.  https://doi.org/10.1021/acs.jproteome.5b00627CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fricker LD (2016) Proteolytic processing of neuropeptides. In: Grant JE, Li H (eds) Analysis of post-translational modifications and proteolysis in neuroscience. Springer New York, New York, NY, pp 209–220.  https://doi.org/10.1007/7657_2015_87CrossRefGoogle Scholar
  29. 29.
    Maki AE, Sweedler JV (2014) Characterizing neuropeptide release: from isolated cells to intact animals. In: Wilson GS, Michael AC (eds) Compendium of in vivo monitoring in real-time molecular neuroscience. World Scientific, Singapore, pp 335–349.  https://doi.org/10.1142/9789814619776_0015CrossRefGoogle Scholar
  30. 30.
    Saidi M, Beaudry F (2017) Targeted high-resolution quadrupole-Orbitrap mass spectrometry analyses reveal a significant reduction of tachykinin and opioid neuropeptides level in PC1 and PC2 mutant mouse spinal cords. Neuropeptides 65(Supplement C):37–44.  https://doi.org/10.1016/j.npep.2017.04.007CrossRefPubMedGoogle Scholar
  31. 31.
    Altschul SF, Lipman DJ (1990) Protein database searches for multiple alignments. Proc Natl Acad Sci U S A 87(14):5509–5513CrossRefGoogle Scholar
  32. 32.
    Amare A, Hummon AB, Southey BR, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) Bridging neuropeptidomics and genomics with bioinformatics: prediction of mammalian neuropeptide prohormone processing. J Proteome Res 5(5):1162–1167.  https://doi.org/10.1021/pr0504541CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Southey BR, Amare A, Zimmerman TA, Rodriguez-Zas SL, Sweedler JV (2006) NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides. Nucleic Acids Res 34(Web Server issue):W267–W272.  https://doi.org/10.1093/nar/gkl161; [pii]: 34/suppl_2/W267CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Perkins DN, Pappin DJ, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567.  https://doi.org/10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2CrossRefPubMedGoogle Scholar
  35. 35.
    Barbé F, Le Feunteun S, Rémond D, Ménard O, Jardin J, Henry G, Laroche B, Dupont D (2014) Tracking the in vivo release of bioactive peptides in the gut during digestion: mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrix fed mini-pigs. Food Res Int 63(Part B):147–156.  https://doi.org/10.1016/j.foodres.2014.02.015CrossRefGoogle Scholar
  36. 36.
    Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989.  https://doi.org/10.1016/1044-0305(94)80016-2CrossRefPubMedGoogle Scholar
  37. 37.
    Wu C, Monroe ME, Xu Z, Slysz GW, Payne SH, Rodland KD, Liu T, Smith RD (2015) An optimized informatics pipeline for mass spectrometry-based peptidomics. J Am Soc Mass Spectrom 26(12):2002–2008.  https://doi.org/10.1007/s13361-015-1169-zCrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467.  https://doi.org/10.1093/bioinformatics/bth092CrossRefPubMedGoogle Scholar
  39. 39.
    Guerrero A, Dallas DC, Contreras S, Chee S, Parker EA, Sun X, Dimapasoc L, Barile D, German JB, Lebrilla CB (2014) Mechanistic peptidomics: factors that dictate specificity in the formation of endogenous peptides in human milk. Mol Cell Proteomics 13(12):3343–3351.  https://doi.org/10.1074/mcp.M113.036194CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342.  https://doi.org/10.1002/rcm.1196CrossRefPubMedGoogle Scholar
  41. 41.
    Colinge J, Masselot A, Cusin I, Mahe E, Niknejad A, Argoud-Puy G, Reffas S, Bederr N, Gleizes A, Rey PA, Bougueleret L (2004) High-performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics. Proteomics 4(7):1977–1984.  https://doi.org/10.1002/pmic.200300708CrossRefPubMedGoogle Scholar
  42. 42.
    Dančík V, Addona TA, Clauser KR, Vath JE, Pevzner PA (1999) De novo peptide sequencing via tandem mass spectrometry. J Comput Biol 6:327–342.  https://doi.org/10.1089/106652799318300CrossRefPubMedGoogle Scholar
  43. 43.
    Taylor JA, Johnson RS (2001) Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal Chem 73(11):2594–2604.  https://doi.org/10.1021/ac001196oCrossRefPubMedGoogle Scholar
  44. 44.
    Fischer B, Roth V, Roos F, Grossmann J, Baginsky S, Widmayer P, Gruissem W, Buhmann JM (2005) NovoHMM: a hidden Markov model for de novo peptide sequencing. Anal Chem 77:7265–7273.  https://doi.org/10.1021/ac0508853CrossRefPubMedGoogle Scholar
  45. 45.
    Frank A, Pevzner P (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77(4):964–973.  https://doi.org/10.1021/ac048788hCrossRefPubMedGoogle Scholar
  46. 46.
    Chi H, Chen H, He K, Wu L, Yang B, Sun R-X, Liu J, Zeng W-F, Song C-Q, He S-M, Dong M-Q (2013) pNovo+: de novo peptide sequencing using complementary HCD and ETD tandem mass spectra. J Proteome Res 12:615–625.  https://doi.org/10.1021/pr3006843CrossRefPubMedGoogle Scholar
  47. 47.
    MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966–968.  https://doi.org/10.1093/bioinformatics/btq054CrossRefGoogle Scholar
  48. 48.
    Tyanova S, Temu T, Carlson A, Sinitcyn P, Mann M, Cox J (2015) Visualization of LC-MS/MS proteomics data in MaxQuant. Proteomics 15(8):1453–1456.  https://doi.org/10.1002/pmic.201400449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fang Xie
    • 1
  • Krishna D. B. Anapindi
    • 1
  • Elena V. Romanova
    • 1
  • Jonathan V. Sweedler
    • 1
    Email author
  1. 1.Department of Chemistry, Beckman InstituteUniversity of IllinoisUrbanaUSA

Personalised recommendations