Advertisement

TMT-MS3-Enabled Proteomic Quantification of Human IPSC-Derived Neurons

  • Nikhil J. Pandya
  • David Avila
  • Tom Dunkley
  • Ravi Jagasia
  • Manuel TzourosEmail author
Protocol
Part of the Neuromethods book series (NM, volume 146)

Abstract

The induced pluripotent stem cell (IPSC)-derived neurons technology has matured to a point where neurological disorders such as autism, schizophrenia, Alzheimer’s, and Parkinson’s disease can be reproducibly modeled. Proteomic analysis of these model systems has the potential to identify disease signatures, characterize treatment effects, and drive biomarker identification. Here we describe the implementation of a TMT-MS3-based proteomic workflow for the characterization of over 7000 proteins in whole cell lysates obtained from human IPSC-derived neurons. This multiplexing protocol should have a better reproducibility and higher number of assessed conditions than the label-free or SILAC-based proteomics approaches.

Keywords

IPSC-derived neurons TMT MS3 Proteomics Orbitrap Lumos Synchronous Precursor Selection 

References

  1. 1.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 107(5):861–872CrossRefGoogle Scholar
  2. 2.
    Shi Y, Kirwan P, Smith J, Robinson HPC, Livesey FJ (2012) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15(3):477–486CrossRefGoogle Scholar
  3. 3.
    Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551CrossRefGoogle Scholar
  4. 4.
    Sances S, Bruijn LI, Chandran S, Eggan K, Ho R, Klim JR, Livesey MR, Lowry E, Macklis JD, Rushton D, Sadegh C, Sareen D, Wichterle H, Zhang S-C, Svendsen CN (2016) Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 16(4):542–553CrossRefGoogle Scholar
  5. 5.
    Adegbola A, Bury LA, Fu C, Zhang M, Wynshaw-Boris A (2017) Concise review: induced pluripotent stem cell models for neuropsychiatric diseases. Stem Cells Transl Med 6(12):2062–2070CrossRefGoogle Scholar
  6. 6.
    Liu Y, Deng W (2016) Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Brain Res 1638:30–41CrossRefGoogle Scholar
  7. 7.
    Haggarty SJ, Silva MC, Cross A, Brandon NJ, Perlis RH (2016) Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Mol Cell Neurosci 73:104–115CrossRefGoogle Scholar
  8. 8.
    Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620):347–355CrossRefGoogle Scholar
  9. 9.
    Bantscheff M, Lemeer S, Savitski MM, Kuster B (2012) Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965CrossRefGoogle Scholar
  10. 10.
    Ong SE (2012) The expanding field of SILAC. Anal Bioanal Chem 404(4):967–976CrossRefGoogle Scholar
  11. 11.
    Rauniyar N, Yates JR (2014) Isobaric labeling-based relative quantification in shotgun proteomics. J Proteome Res 13(12):5293–5309CrossRefGoogle Scholar
  12. 12.
    Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9(9):1885–1897CrossRefGoogle Scholar
  13. 13.
    Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: the good, the bad and the ugly. J Proteome Res 8(11):5347–5355CrossRefGoogle Scholar
  14. 14.
    Wühr M, Haas W, McAlister GC, Peshkin L, Rad R, Kirschner MW, Gygi SP (2012) Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster. Anal Chem 84(21):9214–9221CrossRefGoogle Scholar
  15. 15.
    McAlister GC, Nusinow DP, Jedrychowski MP, Wühr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86(14):7150–7158CrossRefGoogle Scholar
  16. 16.
    Wessel D, Flügge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138(1):141–143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nikhil J. Pandya
    • 1
    • 2
  • David Avila
    • 1
  • Tom Dunkley
    • 1
  • Ravi Jagasia
    • 3
  • Manuel Tzouros
    • 1
    Email author
  1. 1.Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center BaselF. Hoffmann-La Roche Ltd.BaselSwitzerland
  2. 2.Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  3. 3.Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Medicine Area, Roche Innovation Center BaselF. Hoffmann-La Roche Ltd.BaselSwitzerland

Personalised recommendations