Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. https://doi.org/10.1152/physrev.00011.2010
CAS
CrossRef
PubMed
Google Scholar
Brawek B, Garaschuk O (2013) Microglial calcium signaling in the adult, aged and diseased brain. Cell Calcium 53(3):159–169. https://doi.org/10.1016/j.ceca.2012.12.003
CAS
CrossRef
PubMed
Google Scholar
Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23(11):4410–4419
CAS
CrossRef
Google Scholar
Eichhoff G, Brawek B, Garaschuk O (2011) Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta 1813(5):1014–1024. https://doi.org/10.1016/j.bbamcr.2010.10.018
CAS
CrossRef
PubMed
Google Scholar
Inoue K (2002) Microglial activation by purines and pyrimidines. Glia 40(2):156–163. https://doi.org/10.1002/glia.10150
CrossRef
PubMed
Google Scholar
Re DB, Przedborski S (2006) Fractalkine: moving from chemotaxis to neuroprotection. Nat Neurosci 9(7):859–861. https://doi.org/10.1038/nn0706-859
CAS
CrossRef
PubMed
Google Scholar
Cui YH, Le Y, Zhang X, Gong W, Abe K, Sun R, Van Damme J, Proost P, Wang JM (2002) Up-regulation of FPR2, a chemotactic receptor for amyloid beta 1–42 (A beta 42), in murine microglial cells by TNF alpha. Neurobiol Dis 10(3):366–377
CAS
CrossRef
Google Scholar
Brawek B, Garaschuk O (2017) Monitoring in vivo function of cortical microglia. Cell Calcium 64:109–117. https://doi.org/10.1016/j.ceca.2017.02.011
CAS
CrossRef
PubMed
Google Scholar
Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. https://doi.org/10.1038/nn1997
CAS
CrossRef
PubMed
Google Scholar
Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324. https://doi.org/10.1073/pnas.1232232100
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Garaschuk O (2013) Imaging microcircuit function in healthy and diseased brain. Exp Neurol 242:41–49. https://doi.org/10.1016/j.expneurol.2012.02.009
CrossRef
PubMed
Google Scholar
Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A (2006) Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 453(3):385–396. https://doi.org/10.1007/s00424-006-0150-x
CAS
CrossRef
PubMed
Google Scholar
Tian L, Hires SA, Looger LL (2012) Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012(6):647–656. https://doi.org/10.1101/pdb.top069609
CrossRef
PubMed
Google Scholar
Perez Koldenkova V, Nagai T (2013) Genetically encoded Ca2+ indicators: properties and evaluation. Biochim Biophys Acta 1833(7):1787–1797. https://doi.org/10.1016/j.bbamcr.2013.01.011
CAS
CrossRef
PubMed
Google Scholar
Seifert S, Pannell M, Uckert W, Farber K, Kettenmann H (2011) Transmitter- and hormone-activated Ca2+ responses in adult microglia/brain macrophages in situ recorded after viral transduction of a recombinant Ca2+ sensor. Cell Calcium 49(6):365–375. https://doi.org/10.1016/j.ceca.2011.03.005
CAS
CrossRef
PubMed
Google Scholar
Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, Wagner J, Hasler LM, Wild K, Skodras A, Blank T, Staszewski O, Datta M, Centeno TP, Capece V, Islam MR, Kerimoglu C, Staufenbiel M, Schultze JL, Beyer M, Prinz M, Jucker M, Fischer A, Neher JJ (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556(7701):332–338. https://doi.org/10.1038/s41586-018-0023-4
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Tay TL, Mai D, Dautzenberg J, Fernandez-Klett F, Lin G, Sagar DM, Drougard A, Stempfl T, Ardura-Fabregat A, Staszewski O, Margineanu A, Sporbert A, Steinmetz LM, Pospisilik JA, Jung S, Priller J, Grun D, Ronneberger O, Prinz M (2017) A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 20(6):793–803. https://doi.org/10.1038/nn.4547
CAS
CrossRef
PubMed
Google Scholar
Gee JM, Smith NA, Fernandez FR, Economo MN, Brunert D, Rothermel M, Morris SC, Talbot A, Palumbos S, Ichida JM, Shepherd JD, West PJ, Wachowiak M, Capecchi MR, Wilcox KS, White JA, Tvrdik P (2014) Imaging activity in neurons and glia with a Polr2a-based and cre-dependent GCaMP5G-IRES-tdTomato reporter mouse. Neuron 83(5):1058–1072. https://doi.org/10.1016/j.neuron.2014.07.024
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Pozner A, Xu B, Palumbos S, Gee JM, Tvrdik P, Capecchi MR (2015) Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse. Front Mol Neurosci 8:12. https://doi.org/10.3389/fnmol.2015.00012
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Tvrdik P, Kalani MYS (2017) In vivo imaging of microglial calcium signaling in brain inflammation and injury. Int J Mol Sci 18(11):E2366. https://doi.org/10.3390/ijms18112366
CAS
CrossRef
PubMed
Google Scholar
Farber K, Kettenmann H (2006) Functional role of calcium signals for microglial function. Glia 54(7):656–665. https://doi.org/10.1002/glia.20412
CrossRef
PubMed
Google Scholar
Mank M, Griesbeck O (2008) Genetically encoded calcium indicators. Chem Rev 108(5):1550–1564. https://doi.org/10.1021/cr078213v
CAS
CrossRef
PubMed
Google Scholar
Thestrup T, Litzlbauer J, Bartholomaus I, Mues M, Russo L, Dana H, Kovalchuk Y, Liang Y, Kalamakis G, Laukat Y, Becker S, Witte G, Geiger A, Allen T, Rome LC, Chen TW, Kim DS, Garaschuk O, Griesinger C, Griesbeck O (2014) Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 11(2):175–182. https://doi.org/10.1038/nmeth.2773
CAS
CrossRef
PubMed
Google Scholar
Garaschuk O, Griesbeck O (2009) Monitoring calcium levels with genetically encoded indicators. In: Verkhratsky A, Petersen O (eds) Calcium measurement methods, vol 43. Humana, New York, pp 101–117
CrossRef
Google Scholar
Jakobsson J, Lundberg C (2006) Lentiviral vectors for use in the central nervous system. Mol Ther 13(3):484–493. https://doi.org/10.1016/j.ymthe.2005.11.012
CAS
CrossRef
PubMed
Google Scholar
Brawek B, Liang Y, Savitska D, Li K, Fomin-Thunemann N, Kovalchuk Y, Zirdum E, Jakobsson J, Garaschuk O (2017) A new approach for ratiometric in vivo calcium imaging of microglia. Sci Rep 7(1):6030. https://doi.org/10.1038/s41598-017-05952-3
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A, Baccarini A, Lazzari G, Galli C, Naldini L (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25(12):1457–1467. https://doi.org/10.1038/nbt1372
CAS
CrossRef
PubMed
Google Scholar
Sachdeva R, Jonsson ME, Nelander J, Kirkeby A, Guibentif C, Gentner B, Naldini L, Bjorklund A, Parmar M, Jakobsson J (2010) Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors. Proc Natl Acad Sci U S A 107(25):11602–11607. https://doi.org/10.1073/pnas.1006568107
CrossRef
PubMed
PubMed Central
Google Scholar
Akerblom M, Sachdeva R, Quintino L, Wettergren EE, Chapman KZ, Manfre G, Lindvall O, Lundberg C, Jakobsson J (2013) Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat Commun 4:1770. https://doi.org/10.1038/ncomms2801
CAS
CrossRef
PubMed
Google Scholar
Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, Soffer EB, Mondkar S, King GD, Hu J, Sciascia SA, Candolfi M, Greengold DS, Lowenstein PR, Castro MG (2005) Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 12(2):189–211. https://doi.org/10.1016/j.ymthe.2005.03.022
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
De Palma M, Montini E, Santoni de Sio FR, Benedicenti F, Gentile A, Medico E, Naldini L (2005) Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood 105(6):2307–2315. https://doi.org/10.1182/blood-2004-03-0798
CAS
CrossRef
PubMed
Google Scholar
Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297
CAS
CrossRef
Google Scholar
Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 5(5):e10611. https://doi.org/10.1371/journal.pone.0010611
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Damdindorj L, Karnan S, Ota A, Hossain E, Konishi Y, Hosokawa Y, Konishi H (2014) A comparative analysis of constitutive promoters located in adeno-associated viral vectors. PLoS One 9(8):e106472. https://doi.org/10.1371/journal.pone.0106472
CrossRef
PubMed
PubMed Central
Google Scholar
Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hubener M, Keck T, Knott G, Lee WC, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc 4(8):1128–1144. https://doi.org/10.1038/nprot.2009.89
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Goldey GJ, Roumis DK, Glickfeld LL, Kerlin AM, Reid RC, Bonin V, Schafer DP, Andermann ML (2014) Removable cranial windows for long-term imaging in awake mice. Nat Protoc 9(11):2515–2538. https://doi.org/10.1038/nprot.2014.165
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Perillo EP, McCracken JE, Fernee DC, Goldak JR, Medina FA, Miller DR, Yeh HC, Dunn AK (2016) Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser. Biomed Opt Express 7(2):324–334. https://doi.org/10.1364/BOE.7.000324
CrossRef
PubMed
PubMed Central
Google Scholar
Chan KY, Jang MJ, Yoo BB, Greenbaum A, Ravi N, Wu WL, Sanchez-Guardado L, Lois C, Mazmanian SK, Deverman BE, Gradinaru V (2017) Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat Neurosci 20(8):1172–1179. https://doi.org/10.1038/nn.4593
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M, Ritola KD, Lindo S, Michael S, Kuleshova E, Ojala D, Huang CC, Gerfen CR, Schiller J, Dudman JT, Hantman AW, Looger LL, Schaffer DV, Karpova AY (2016) A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92(2):372–382. https://doi.org/10.1016/j.neuron.2016.09.021
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Deo C, Lavis LD (2018) Synthetic and genetically encoded fluorescent neural activity indicators. Curr Opin Neurobiol 50:101–108. https://doi.org/10.1016/j.conb.2018.01.003
CAS
CrossRef
PubMed
Google Scholar
Tiscornia G, Singer O, Verma IM (2006) Production and purification of lentiviral vectors. Nat Protoc 1(1):241–245. https://doi.org/10.1038/nprot.2006.37
CAS
CrossRef
PubMed
Google Scholar
Kutner RH, Zhang XY, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4(4):495–505. https://doi.org/10.1038/nprot.2009.22
CAS
CrossRef
PubMed
Google Scholar
Cribbs AP, Kennedy A, Gregory B, Brennan FM (2013) Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. BMC Biotechnol 13:98. https://doi.org/10.1186/1472-6750-13-98
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Poynter G, Huss D, Lansford R (2009) Generation of high-titer lentivirus for the production of transgenic quail. Cold Spring Harbor Protoc 2009(1):pdb prot5117. https://doi.org/10.1101/pdb.prot5117
CrossRef
Google Scholar
Jiang W, Hua R, Wei M, Li C, Qiu Z, Yang X, Zhang C (2015) An optimized method for high-titer lentivirus preparations without ultracentrifugation. Sci Rep 5:13875. https://doi.org/10.1038/srep13875
CrossRef
PubMed
PubMed Central
Google Scholar
Baekelandt V, Eggermont K, Michiels M, Nuttin B, Debyser Z (2003) Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Ther 10(23):1933–1940. https://doi.org/10.1038/sj.gt.3302094
CAS
CrossRef
PubMed
Google Scholar
Andermann ML, Kerlin AM, Reid RC (2010) Chronic cellular imaging of mouse visual cortex during operant behavior and passive viewing. Front Cell Neurosci 4:3. https://doi.org/10.3389/fncel.2010.00003
CrossRef
PubMed
PubMed Central
Google Scholar
Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC (2011) Functional specialization of mouse higher visual cortical areas. Neuron 72(6):1025–1039. https://doi.org/10.1016/j.neuron.2011.11.013
CAS
CrossRef
PubMed
Google Scholar
Kerlin AM, Andermann ML, Berezovskii VK, Reid RC (2010) Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67(5):858–871. https://doi.org/10.1016/j.neuron.2010.08.002
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sofroniew NJ, Flickinger D, King J, Svoboda K (2016) A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. elife 5:e14472. https://doi.org/10.7554/eLife.14472
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ji N (2017) Adaptive optical fluorescence microscopy. Nat Methods 14(4):374–380. https://doi.org/10.1038/nmeth.4218
CAS
CrossRef
PubMed
Google Scholar
Saini M, Singh Y, Arora P, Arora V, Jain K (2015) Implant biomaterials: a comprehensive review. World J Clin Cases 3(1):52–57. https://doi.org/10.12998/wjcc.v3.i1.52
CrossRef
PubMed
PubMed Central
Google Scholar