Application of Next-Generation Maleimides (NGMs) to Site-Selective Antibody Conjugation

  • Maurício Morais
  • Nafsika Forte
  • Vijay Chudasama
  • James R. BakerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2033)


Site-selective antibody conjugation is widely recognized as a key strategy for the optimum construction of antibody–drug conjugates (ADCs). Achieving such bioconjugation directly onto native antibodies would represent the ideal solution, as it would afford greatly improved homogeneity whilst avoiding the need for genetic engineering, and even allow the repurposing of existing antibodies “off-the shelf.” Here we describe a protocol for the use of next-generation maleimides (NGMs) for the selective modification of the four interchain disulfide bonds present in a typical IgG1 antibody format. These reagents retain the efficiency of classical maleimides whilst serving to rebridge each reduced disulfide bond, affording one attachment per disulfide. The approach is simple, uses readily available reagents, and generates robustly stable conjugates which are ideal for in vitro or in vivo applications. In addition to use in the construction of ADCs these reagents can also be used to develop antibody conjugates for imaging, bispecifics, and broadly for use across biology and medicine.

Key words

Site-selective antibody conjugation Antibody–drug conjugates (ADCs) Disulfide bridging Next-generation maleimides (NGMs) 


  1. 1.
    Wang LT, Amphlett G, Blattler WA, Lambert JM, Zhang W (2005) Structural characterization of the maytansinoid—monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci 14(9):2436–2446CrossRefGoogle Scholar
  2. 2.
    Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S et al (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26(8):925–932CrossRefGoogle Scholar
  3. 3.
    Junutula JR, Flagella KM, Graham RA, Parsons KL, Ha E, Raab H et al (2010) Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin Cancer Res 16(19):4769–4778CrossRefGoogle Scholar
  4. 4.
    Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10(20):7063–7070CrossRefGoogle Scholar
  5. 5.
    Beckley NS, Lazzareschi KP, Chih HW, Sharma VK, Flores HL (2013) Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjug Chem 24(10):1674–1683CrossRefGoogle Scholar
  6. 6.
    Adem YT, Schwarz KA, Duenas E, Patapoff TW, Galush WJ, Esue O (2014) Auristatin antibody drug conjugate physical instability and the role of drug payload. Bioconjug Chem 25(4):656–664CrossRefGoogle Scholar
  7. 7.
    Boswell CA, Mundo EE, Zhang C, Bumbaca D, Valle NR, Kozak KR et al (2011) Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug Chem 22(10):1994–2004CrossRefGoogle Scholar
  8. 8.
    Alley SC, Benjamin DR, Jeffrey SC, Okeley NM, Meyer DL, Sanderson RJ et al (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19(3):759–765CrossRefGoogle Scholar
  9. 9.
    Shen B-Q, Xu K, Liu L, Raab H, Bhakta S, Kenrick M et al (2012) Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol 30(2):184–189CrossRefGoogle Scholar
  10. 10.
    Dennler P, Fischer E, Schibli R (2015) Antibody conjugates: from heterogeneous populations to defined reagents. Antibodies 4(3):197–224CrossRefGoogle Scholar
  11. 11.
    Jackson D, Atkinson J, Guevara CI, Zhang CY, Kery V, Moon SJ et al (2014) In vitro and in vivo evaluation of cysteine and site specific conjugated herceptin antibody-drug conjugates. PLoS One 9(1):14CrossRefGoogle Scholar
  12. 12.
    Akkapeddi P, Azizi SA, Freedy AM, Cal P, Gois PMP, Bernardes GJL (2016) Construction of homogeneous antibody-drug conjugates using site-selective protein chemistry. Chem Sci 7(5):2954–2963CrossRefGoogle Scholar
  13. 13.
    Jackson DY (2016) Processes for constructing homogeneous antibody drug conjugates. Org Process Res Dev 20(5):852–866CrossRefGoogle Scholar
  14. 14.
    Chudasama V, Maruani A, Caddick S (2016) Recent advances in the construction of antibody-drug conjugates. Nat Chem 8(2):113–118CrossRefGoogle Scholar
  15. 15.
    Kuan SL, Wang T, Weil T (2016) Site-selective disulfide modification of proteins: expanding diversity beyond the proteome. Chem Eur J 22(48):17112–17129CrossRefGoogle Scholar
  16. 16.
    Bryant P, Pabst M, Badescu G, Bird M, McDowell W, Jamieson E et al (2015) In vitro and in vivo evaluation of cysteine rebridged trastuzumab-MMAE antibody drug conjugates with defined drug-to-antibody ratios. Mol Pharm 12(6):1872–1879CrossRefGoogle Scholar
  17. 17.
    Badescu G, Bryant P, Bird M, Henseleit K, Swierkosz J, Parekh V et al (2014) Bridging disulfides for stable and defined antibody drug conjugates. Bioconjug Chem 25(6):1124–1136CrossRefGoogle Scholar
  18. 18.
    Maruani A, Smith MEB, Miranda E, Chester KA, Chudasama V, Caddick S (2015) A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nat Commun 6:6645CrossRefGoogle Scholar
  19. 19.
    Bahou C, Richards DA, Maruani A, Love EA, Javaid F, Caddick S et al (2018) Highly homogeneous antibody modification through optimisation of the synthesis and conjugation of functionalised dibromopyridazinediones. Org Biomol Chem 16(8):1359–1366CrossRefGoogle Scholar
  20. 20.
    Tedaldi LM, Smith MEB, Nathani R, Baker JR (2009) Bromomaleimides; new reagents for the selective and reversible modification of cysteine. Chem Commun (43):6583–6585Google Scholar
  21. 21.
    Smith MEB, Schumacher FF, Ryan CP, Tedaldi LM, Papaioannou D, Waksman G et al (2010) Protein modification, bioconjugation, and disulfide bridging using bromomaleimides. J Am Chem Soc 132(6):1960–1965CrossRefGoogle Scholar
  22. 22.
    Ryan CP, Smith MEB, Schumacher FF, Grohmann D, Papaioannou D, Waksman G et al (2011) Tunable reagents for multi-functional bioconjugation: reversible or permanent chemical modification of proteins and peptides by control of maleimide hydrolysis. Chem Commun 47(19):5452–5454CrossRefGoogle Scholar
  23. 23.
    Castaneda L, Maruani A, Schumacher FF, Miranda E, Chudasama V, Chester KA et al (2013) Acid-cleavable thiomaleamic acid linker for homogeneous antibody-drug conjugation. Chem Commun 49(74):8187–8189CrossRefGoogle Scholar
  24. 24.
    Schumacher FF, Sanchania VA, Tolner B, Wright ZVF, Ryan CP, Smith MEB et al (2013) Homogeneous antibody fragment conjugation by disulfide bridging introduces ‘spinostics’. Sci Rep 3:1525CrossRefGoogle Scholar
  25. 25.
    Schumacher FF, Nunes JPM, Maruani A, Chudasama V, Smith MEB, Chester KA et al (2014) Next generation maleimides enable the controlled assembly of antibody-drug conjugates via native disulfide bond bridging. Org Biomol Chem 12(37):7261–7269CrossRefGoogle Scholar
  26. 26.
    Nunes JP, Morais M, Vassileva V, Robinson E, Rajkumar VS, Smith ME et al (2015) Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC). Chem Commun 51(53):10624–10627CrossRefGoogle Scholar
  27. 27.
    Robinson E, Nunes JP, Vassileva V, Maruani A, Nogueira J, Smith MEB et al (2017) Pyridazinediones deliver potent, stable, targeted and efficacious antibody-drug conjugates (ADCs) with a controlled loading of 4 drugs per antibody. RSC AdvGoogle Scholar
  28. 28.
    Morais M, Nunes JPM, Karu K, Forte N, Benni I, Smith MEB et al (2017) Optimisation of the dibromomaleimide (DBM) platform for native antibody conjugation by accelerated post-conjugation hydrolysis. Org Biomol Chem 15(14):2947–2952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Maurício Morais
    • 1
  • Nafsika Forte
    • 1
  • Vijay Chudasama
    • 1
  • James R. Baker
    • 1
    Email author
  1. 1.Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations