Skip to main content

SpyTag–SpyCatcher Chemistry for Protein Bioconjugation In Vitro and Protein Topology Engineering In Vivo

  • Protocol
  • First Online:
Bioconjugation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2033))

Abstract

The emergence of “molecular superglue,” such as SpyTag–SpyCatcher chemistry, has tremendously expanded our capability in manipulating protein shape and architecture via conjugation. Telechelic proteins bearing the SpyTag and SpyCatcher reactive sequences can be expressed and purified for bioconjugation in vitro, giving protein conjugates, branched proteins, and circular proteins. By encoding both reactive sequences in the same construct for expression in vivo, the nascent protein undergoes programmed posttranslational modification guided by protein folding and reaction, leading to diverse nonlinear topologies in situ. In this chapter, we present the SpyTag–SpyCatcher chemistry as a versatile platform for protein bioconjugation and topology engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawson PE, Muir TW, Clark-Lewis I et al (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    Article  CAS  Google Scholar 

  2. Beatty KE, Tirrell DA (2009) Noncanonical amino acids in protein science and engineering. In: Köhrer C, RajBhandary UL (eds) Protein engineering. Springer, Berlin/Heidelberg, pp 127–153

    Chapter  Google Scholar 

  3. Jackson DY, Burnier JP, Wells JA (1995) Enzymatic cyclization of linear peptide esters using subtiligase. J Am Chem Soc 117:819–820

    Article  CAS  Google Scholar 

  4. Mazmanian SK, Liu G, Ton-That H et al (1999) Staphylococcus aureus Sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760–763

    Article  CAS  Google Scholar 

  5. Chen I, Dorr BM, Liu DR (2011) A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A 108:11399–11404

    Article  CAS  Google Scholar 

  6. Mao H, Hart SA, Schink A et al (2004) Sortase-mediated protein ligtion: a new method for protein engineering. J Am Chem Soc 126:2670–2671

    Article  CAS  Google Scholar 

  7. Wu Z, Guo X, Guo Z (2011) Sortase A-catalyzed peptide cyclization for the synthesis of macrocyclic peptides and glycopeptides. Chem Commun 47:9218–9220

    Article  CAS  Google Scholar 

  8. Stanger K, Maurer T, Kaluarachchi H et al (2014) Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A. FEBS Lett 588:4487–4496

    Article  CAS  Google Scholar 

  9. Antos JM, Popp MW, Ernst R et al (2009) A straight path to circular proteins. J Biol Chem 284:16028–16036

    Article  CAS  Google Scholar 

  10. Popp MW, Dougan SK, Chuang TY et al (2011) Sortase-catalyzed transformations that improve the properties of cytokines. Proc Natl Acad Sci U S A 108:3169–3174

    Article  CAS  Google Scholar 

  11. Rasche N, Tonillo J, Rieker M et al (2016) Prolink-single step circularization and purification procedure for the generation of an improved variant of human growth hormone. Bioconjug Chem 27:1341–1347

    Article  CAS  Google Scholar 

  12. Samantaray S, Marathe U, Dasgupta S et al (2008) Peptide-sugar ligation catalyzed by transpeptidase sortase: a facile approach to neoglycoconjugate synthesis. J Am Chem Soc 130:2132–2133

    Article  CAS  Google Scholar 

  13. Hou Y, Yuan J, Zhou Y et al (2016) A concise approach to site-specific topological protein-poly(amino acid) conjugates enabled by in situ-generated functionalities. J Am Chem Soc 138:10995–11000

    Article  CAS  Google Scholar 

  14. Pritz S, Wolf Y, Kraetke O et al (2007) Synthesis of biologically active peptide nucleic acid-peptide conjugates by sortase-mediated ligation. J Org Chem 72:3909–3912

    Article  CAS  Google Scholar 

  15. Guo X, Wang Q, Swarts BM et al (2009) Sortase-catalyzed peptide-glycosylphosphatidylinositol analogue ligation. J Am Chem Soc 131:9878–9879

    Article  CAS  Google Scholar 

  16. Nguyen GK, Wang S, Qiu Y et al (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10:732–738

    Article  CAS  Google Scholar 

  17. Nguyen GK, Kam A, Loo S et al (2015) Butelase 1: a versatile ligase for peptide and protein macrocyclization. J Am Chem Soc 137:15398–15401

    Article  CAS  Google Scholar 

  18. Cao Y, Nguyen GK, Tam JP et al (2015) Butelase-mediated synthesis of protein thioesters and its application for tandem chemoenzymatic ligation. Chem Commun 51:17289–17292

    Article  CAS  Google Scholar 

  19. Nguyen GKT, Cao Y, Wang W et al (2015) Site-specific N-terminal labeling of peptides and proteins using butelase 1 and thiodepsipeptide. Angew Chem Int Ed 54:15694–15698

    Article  CAS  Google Scholar 

  20. Nguyen GK, Hemu X, Quek JP et al (2016) Butelase-mediated macrocyclization of d-amino-acid-containing peptides. Angew Chem Int Ed 55:12802–12806

    Article  CAS  Google Scholar 

  21. Hemu X, Qiu Y, Nguyen GK et al (2016) Total synthesis of circular bacteriocins by butelase 1. J Am Chem Soc 138:6968–6971

    Article  CAS  Google Scholar 

  22. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for biophysical analysis of proteins. Nat Methods 3:429–438

    Article  CAS  Google Scholar 

  23. Elleuche S, Poggeler S (2010) Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol 87:479–489

    Article  CAS  Google Scholar 

  24. Iwai H, Lingel A, Pluckthun A (2001) Cyclic green fluorescent protein produced in vivo using an artificially split PI-PfuI intein from Pyrococcus furiosus. J Biol Chem 276:16548–16554

    Article  CAS  Google Scholar 

  25. Iwai H, Zuger S, Jin J et al (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from nostoc punctiforme. FEBS Lett 580:1853–1858

    Article  CAS  Google Scholar 

  26. Zakeri B, Fierer JO, Celik E et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697

    Article  CAS  Google Scholar 

  27. Li L, Fierer JO, Rapoport TA et al (2014) Structural analysis and optimization of the covalent association between SpyCatcher and a peptide tag. J Mol Biol 426:309–317

    Article  CAS  Google Scholar 

  28. Veggiani G, Zakeri B, Howarth M (2014) Superglue from bacteria: Unbreakable bridges for protein nanotechnology. Trends Biotechnol 32:506–512

    Article  CAS  Google Scholar 

  29. Reddington SC, Howarth M (2015) Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr Opin Chem Biol 29:94–99

    Article  CAS  Google Scholar 

  30. Sun F, Zhang WB (2017) Unleashing chemical power from protein sequence space toward genetically encoded click chemistry. Chin Chem Lett 28:2078–2084

    Article  CAS  Google Scholar 

  31. Veggiani G, Nakamura T, Brenner MD et al (2016) Programmable polyproteams built using twin peptide superglues. Proc Natl Acad Sci U S A 113:1202–1207

    Article  CAS  Google Scholar 

  32. Keeble AH, Banerjee A, Ferla MP et al (2017) Evolving accelerated amidation by SpyTag/SpyCatcher to analyze membrane dynamics. Angew Chem Int Ed 56:16521–16525

    Article  CAS  Google Scholar 

  33. Liu D, Wu WH, Liu YJ et al (2017) Topology engineering of proteins in vivo using genetically encoded, mechanically interlocking SpyX modules for enhanced stability. ACS Cent Sci 3:473–481

    Article  CAS  Google Scholar 

  34. Sun F, Zhang WB, Mahdavi A et al (2014) Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc Natl Acad Sci U S A 111:11269–11274

    Article  CAS  Google Scholar 

  35. Gao X, Fang J, Xue B et al (2016) Engineering protein hydrogels using SpyCatcher-SpyTag chemistry. Biomacromolecules 17:2812–2819

    Article  CAS  Google Scholar 

  36. Banerjee A, Howarth M (2017) Nanoteamwork: covalent protein assembly beyond duets towards protein ensembles and orchestras. Curr Opin Biotechnol 51:16–23

    Article  Google Scholar 

  37. Zhang WB, Sun F, Tirrell DA et al (2013) Controlling macromolecular topology with genetically encoded SpyTag-SpyCatcher chemistry. J Am Chem Soc 135:13988–13997

    Article  CAS  Google Scholar 

  38. Gilbert C, Howarth M, Harwood CR et al (2017) Extracellular self-assembly of functional and tunable protein conjugates from bacillus subtilis. ACS Synth Biol 6:957–967

    Article  CAS  Google Scholar 

  39. Stein V, Nabi M, Alexandrov K (2017) Ultrasensitive scaffold-dependent protease sensors with large dynamic range. ACS Synth Biol 6:1337–1342

    Article  CAS  Google Scholar 

  40. Brune KD, Buldun CM, Li Y et al (2017) Dual plug-and-display synthetic assembly using orthogonal reactive proteins for twin antigen immunization. Bioconjug Chem 28:1544–1551

    Article  CAS  Google Scholar 

  41. Schoene C, Bennett SP, Howarth M (2016) SpyRing interrogation: analyzing how enzyme resilience can be achieved with phytase and distinct cyclization chemistries. Sci Rep 6:21151

    Article  CAS  Google Scholar 

  42. Schoene C, Fierer JO, Bennett SP et al (2014) SpyTag/SpyCatcher cyclization confers resilience to boiling on a mesophilic enzyme. Angew Chem Int Ed 53:6101–6104

    Article  CAS  Google Scholar 

  43. Si M, Xu Q, Jiang L et al (2016) SpyTag/SpyCatcher cyclization enhances the thermostability of firefly luciferase. PLoS One 11:e0162318

    Article  Google Scholar 

  44. Wang X-W, Zhang WB (2016) Cellular synthesis of protein catenanes. Angew Chem Int Ed 55:3442–3446

    Article  CAS  Google Scholar 

  45. Wang X-W, Zhang WB (2017) Protein catenation enhances both stability and activity of folded structural domains. Angew Chem Int Ed 56:13985–13989

    Article  CAS  Google Scholar 

  46. MacEwan SR, Chilkoti A (2010) Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers 94:60–77

    Article  CAS  Google Scholar 

  47. Howarth M. http://www.bioch.ox.ac.uk/howarth/reagents.htm. Accessed 20 Jan 2018

  48. Salis HM. https://salislab.net/software/. Accessed 20 Jan 2018

  49. Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 498:19–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Mark Howarth at Oxford University for helpful discussions and suggestions. We are grateful for the financial support from the National Natural Science Foundation of China (Grants 21474003, 91427304), 863 Program (2015AA020941), and “1000 Plan (Youth).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, XW., Zhang, WB. (2019). SpyTag–SpyCatcher Chemistry for Protein Bioconjugation In Vitro and Protein Topology Engineering In Vivo. In: Massa, S., Devoogdt, N. (eds) Bioconjugation. Methods in Molecular Biology, vol 2033. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9654-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9654-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9653-7

  • Online ISBN: 978-1-4939-9654-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics