Skip to main content

Enzymatically Catalyzed Radiofluorination of Biomolecules

  • Protocol
  • First Online:
Bioconjugation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2033))

  • 2267 Accesses

Abstract

There has been significant and rapid growth in the development of amino acid-based molecular imaging agents (e.g., peptides, proteins, and antibody constructs) largely due to facile library preparation and high throughput screening. Positron-emitting fluorine-18 (half-life = 109.7 min) has a unique set of properties that match well with the pharmacokinetics of smaller sized constructs. Several indirect fluorine-18 labeling approaches have been developed yet only a few have advanced to human trials. Enzymatically catalyzed radiofluorination utilizing lipoic acid ligase shows promise as a mild site-specific method for coupling fluorine-18-labeled carboxylate substrates with biomolecules. Methods for preparation of two [18F]fluorocarboxylates and their ligation to a specific peptide sequence (LAP peptide) are presented herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fani M, Maecke HR, Okarvi SM (2012) Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics 2:481–501

    Article  CAS  Google Scholar 

  2. Jackson IM, Scott PJH, Thompson S (2017) Clinical applications of radiolabeled peptides for PET. Semin Nucl Med 47:493–523

    Article  Google Scholar 

  3. Mullard A (2016) FDA approvals for the first 6 months of 2016. Nat Rev Drug Disc 15:523

    Google Scholar 

  4. Vaidyanathan G, Zalutsky MR (2006) Synthesis of N-succinimidyl 4-[18F]fluorobenzoate, an agent for labeling proteins and peptides with 18F. Nat Protoc 1:1655–1661

    Article  CAS  Google Scholar 

  5. Vaidyanathan G, Zalutsky MR (1992) Labeling proteins with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate. Nucl Med Biol 19:275–281

    CAS  Google Scholar 

  6. Berndt M, Pietzsch J, Wuest F (2007) Labeling of low-density lipoproteins using the 18F-labeled thiol-reactive reagent N-[6-(4[18F]fluorobenzylidene)aminooxy-hexyl]maleimide. Nuc Med Biol 34:5–15

    Article  CAS  Google Scholar 

  7. Gill HS, Tinianow JN, Ogasawara A et al (2009) A modular platform for the rapid site-specific radiolabeling of proteins with 18F exemplified by quantitative positron emission tomography of human epidermal growth factor receptor 2. J Med Chem 52:5816–5825

    Article  CAS  Google Scholar 

  8. Jeon J, Shen B, Xiong L et al (2012) Efficient method for site-specific 18F-labeling of biomolecules using the rapid condensation reaction between 2-cyanobenzothiazole and cysteine. Bioconjug Chem 23:1902–1908

    Article  CAS  Google Scholar 

  9. Hausner SH, Marik J, Gagnon MKJ, Sutcliffe JL (2008) In vivo positron emission tomography (PET) imaging with an αvβ6 specific peptide radiolabeled using 18F-“click” chemistry: evaluation and comparison with the corresponding 4-[18F]Fluorobenzoyl- and 2-[18F]Fluoropropionyl- peptides. J Med Chem 51:5901–5904

    Article  CAS  Google Scholar 

  10. Liu S, Hassink M, Selvaraj R et al (2013) Efficient 18F labeling of cysteine-containing peptides and proteins using tetrazine-trans-cyclooctene ligation. Mol Imag 12:121–128

    Article  CAS  Google Scholar 

  11. Marik J, Sutcliffe JL (2006) Click for PET: rapid preparation of [F-18]fluoropeptides using Cu-I catalyzed 1,3-dipolar cycloaddition. Tet Lett 47:6681–6684

    Article  CAS  Google Scholar 

  12. Wängler C, Niedermoser S, Chin J et al (2012) One-step 18F-labeling of peptides for positron emission tomography imaging using the SiFA methodology. Nat Protoc 7:1946–1955

    Article  Google Scholar 

  13. Wängler C, Waser B, Alke A et al (2010) One-step 8F-labeling of carbohydrate-conjugated octreotate-derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET). Bioconjug Chem 21:2289–2296

    Article  Google Scholar 

  14. Fernández-Suárez M, Baruah H, Martínez-Hernández L et al (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotech 25:1483–1487

    Article  Google Scholar 

  15. Uttamapinant C, White KA, Baruah H et al (2010) A fluorophore ligase for site-specific protein labeling inside living cells. PNAS 107:10914–10919

    Article  CAS  Google Scholar 

  16. Puthenveetil S, Liu DS, White KA et al (2009) Yeast display evolution of a kinetically efficient 13-amino acid substrate for lipoic acid ligase. J Am Chem Soc 131:16430–16438

    Article  CAS  Google Scholar 

  17. Cohen JD, Zou P, Ting AY (2012) Site-specific protein modification using lipoic acid ligase and bis-aryl hydrazone formation. Chembiochem 13:888–894

    Article  CAS  Google Scholar 

  18. Cohen JD, Thompson S, Ting AY (2011) Structure-guided engineering of a Pacific blue fluorophore ligase for specific protein imaging in living cells. Biochemist 50:8221–8225

    Article  CAS  Google Scholar 

  19. Drake CR, Sevillano N, Truillet C et al (2016) Site-specific radiofluorination of biomolecules with 8-[18F]-Fluorooctanoic acid catalyzed by Lipoic acid ligase. ACS Chem Biol 11:1587–1594

    Article  CAS  Google Scholar 

  20. Drake CR, Sevillano N, Blecha J, et al (Submitted) Second-generation 18F-labeled prosthetic for automated enzymatically catalyzed radiolabeling of proteins on the ELIXYS platform.

    Google Scholar 

  21. Nagatsugi F, Sasaki S, Maeda M (1994) 8-[F-18] Fluorooctanoic acid and its Beta-substituted derivatives as potential agents for cerebral fatty-acid studies—synthesis and biodistribution. Nucl Med Biol 21:809–817

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a seed grant from the UCSF Department of Radiology and Biomedical Imaging, the UCSF Resource Allocation Program, the US Department of Energy (DOE DE-SC002061), and NIH National Institute of Biomedical Imaging and Bioengineering SBIR (R43EB023782). Additional support for C.R.D. was received from the National Cancer Institute (HHSN261201400041C) and National Institute of Mental Health (2R44MH097271). M.J.E. was supported by the National Institute of Mental Health (R01MH115043) and the National Institute of Biomedical Imaging and Bioengineering (R01EB025207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Drake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Drake, C.R., Evans, M.J., VanBrocklin, H.F. (2019). Enzymatically Catalyzed Radiofluorination of Biomolecules. In: Massa, S., Devoogdt, N. (eds) Bioconjugation. Methods in Molecular Biology, vol 2033. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9654-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9654-4_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9653-7

  • Online ISBN: 978-1-4939-9654-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics