Advertisement

Clinical Flow-Cytometric Testing in Chronic Lymphocytic Leukemia

  • Dalia A. Salem
  • Maryalice Stetler-StevensonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2032)

Abstract

Flow-cytometric demonstration of the typical chronic lymphocytic leukemia (CLL) immunophenotype is vital for diagnosis. CLL has a characteristic immunophenotype, expressing CD5, CD19, dim CD20, dim CD22, CD23, bright CD43, dim CD45, dim to negative CD79b, dim CD81, CD200, and dim monoclonal surface immunoglobulin. This characteristic immunophenotype allows a definitive diagnosis and the ruling out of another leukemia or lymphoma. Flow cytometry also provides important prognostic information and accurate assessment of response to therapy. Here we describe optimal specimen collection, red cell lysis, appropriate panel, cell staining, acquisition on a flow cytometer, and analysis for CLL specimens.

Key words

Flow cytometry Immunophenotype Chronic lymphocytic leukemia Minimal residual disease 

References

  1. 1.
    Campo E, Ghia P, Montserrat E et al (2017) Chronic lymphocytic leukemia/small lymphocytic lymphoma. In: Swerdlow SH, Campo E, Harris NL, Pileri SA, Jaffe ES, Stein H, Thiele J et al (eds) WHO classification of tumours of hematopoietic and lymphoid tissues, 4th edn. IRAC, Lyon, pp 216–221Google Scholar
  2. 2.
    Rawstron AC, Villamor N, Ritgen M et al (2007) International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia 21(5):956–964.  https://doi.org/10.1038/sj.leu.2404584CrossRefGoogle Scholar
  3. 3.
    Muller-Hermelink HKME, Catovsky D, Campo E, Harris NL, Stien H (2007) Chronic lymphocytic leukemia/small lymphocytic lymphoma. WHO classification of hematopoietic and lymphoid tissues. IARC, LyonGoogle Scholar
  4. 4.
    Alapat D, Coviello-Malle J, Owens R et al (2012) Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am J Clin Pathol 137(1):93–100.  https://doi.org/10.1309/ajcp59uorcyzevqoCrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Marti G, Rawstron AC, Ghia P, Hillmen P, Houlston RS, Kay N, Aurran Schleinitz T, Caporaso N, on behalf of The International Familial CLL Consortium (2005) Diagnostic criteria for monoclonal B-cell lymphocytosis (MBL). Br J Haematol 130:325–332CrossRefGoogle Scholar
  6. 6.
    Ahmad E, Steinberg SM, Goldin L, Hess CJ, Caporaso N, Kreitman RJ, Wiestner A, Wilson W, White T, Marti G, Stetler-Stevenson M (2008) Immunophenotypic features distinguishing familial chronic lymphocytic leukemia from sporadic chronic lymphocytic leukemia. Cytometry B Clin Cytom 74:221–226CrossRefGoogle Scholar
  7. 7.
    Kingma DW, Imus P, Xie XY, Jasper G, Sorbara L, Stewart C, Stetler-Stevenson M (2002) CD2 is expressed by a sub-population of normal B cells and is frequently present in mature B cell neoplasms. Cytometry B Clin Cytom 50:243–248CrossRefGoogle Scholar
  8. 8.
    Kampalath B, Barcos MP, Stewart C (2003) Phenotypic heterogeneity of B cells in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Clin Pathol 119(6):824–832.  https://doi.org/10.1309/4agut3lkeurd7t7kCrossRefPubMedGoogle Scholar
  9. 9.
    Damle R, Wasil T, Fais F et al (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–1847PubMedGoogle Scholar
  10. 10.
    Durig J, Naschar M, Schmucker U, Renzing-Kohler K, Holter A, Huttmann T, Duhrsen U (2002) CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. Leukemia 16:30–35CrossRefGoogle Scholar
  11. 11.
    Hamblin TJ, Orchard JA, Ibotson RE et al (2002) CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia but CD38 expression may vary during the course of the disease. Blood 99:1023–1029CrossRefGoogle Scholar
  12. 12.
    Bulian P, Shanafelt TD, Fegan C et al (2014) CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia. J Clin Oncol 32(9):897–904.  https://doi.org/10.1200/jco.2013.50.8515CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Chiorazzi N (2012) Implications of new prognostic markers in chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program 2012:76–87.  https://doi.org/10.1182/asheducation-2012.1.76CrossRefPubMedGoogle Scholar
  14. 14.
    Gattei V, Bulian P, Del Principe MI et al (2008) Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 111(2):865–873.  https://doi.org/10.1182/blood-2007-05-092486CrossRefPubMedGoogle Scholar
  15. 15.
    Gooden CE, Jones P, Bates R et al (2018) CD49d shows superior performance characteristics for flow cytometric prognostic testing in chronic lymphocytic leukemia/small lymphocytic lymphoma. Cytometry B Clin Cytom 94(1):129–135.  https://doi.org/10.1002/cyto.b.21384CrossRefPubMedGoogle Scholar
  16. 16.
    Rawstron AC, Kennedy B, Evans PA et al (2001) Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 98:29–35CrossRefGoogle Scholar
  17. 17.
    Moreton P, Kennedy B, Lucas G et al (2005) Eradication of minimal residual disease in B-cell chronic lymphocytic leukemia after alemtuzumab therapy is associated with prolonged survival. J Clin Oncol 23(13):2971–2979.  https://doi.org/10.1200/jco.2005.04.021CrossRefGoogle Scholar
  18. 18.
    Wayne P (2007) Clinical flow Cytometric analysis of neoplastic Hematolymphoid cells; approved guideline, 2nd ed. CLSI document H43-A2, 2nd edn. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  19. 19.
    Stelzer GT, Marti G, Hurley A et al (1997) U.S.-Canadian consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: standardization and validation of laboratory procedures. Cytometry 30(5):214–230CrossRefGoogle Scholar
  20. 20.
    Cadena-Herrera D, Esparza-De Lara JE, Ramirez-Ibanez ND et al (2015) Validation of three viable-cell counting methods: manual, semi-automated, and automated. Biotechnol Rep (Amst) 7:9–16.  https://doi.org/10.1016/j.btre.2015.04.004CrossRefGoogle Scholar
  21. 21.
    Rawstron AC, Bottcher S, Letestu R et al (2013) Improving efficiency and sensitivity: European research initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia 27(1):142–149.  https://doi.org/10.1038/leu.2012.216CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of PathologyCCR, NCI, NIHBethesdaUSA
  2. 2.Clinical Pathology Department, Faculty of MedicineMansoura UniversityMansouraEgypt

Personalised recommendations