Advertisement

Rare Event Phenotyping and Molecular Characterization: Circulating Tumor Cells

  • Moen SenEmail author
  • Ling Wang
  • Liping Yu
  • Erica L. Carpenter
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2032)

Abstract

Noninvasive isolation of circulating tumor cells (CTCs) from patient blood samples allows for interrogation of valuable molecular and phenotypic information useful for disease diagnosis and monitoring response to therapy. However, CTCs are extremely rare relative to red and white blood cells (R/WBC), thus making CTC isolation from unmanipulated whole blood very time-consuming. Moreover, single CTC analysis often requires hand-picking, a step that can result in more CTC loss and compromised cell integrity. Here we describe an automated flow cytometry-based approach for isolation and analysis of single, viable CTCs that combines gentle RBC lysis and magnetic, no-wash negative-depletion of WBCs, followed by a highly adaptable sorting protocol for rare cells of interest. Multiparametric flow-cytometric panels allow probing of numerous extracellular markers for immunophenotyping, while whole transcriptome analysis contributes to molecular characterization of individual CTCs. Index sorting links single CTC proteogenomics information.

Key words

Circulating tumor cells Acoustic cell enrichment Magnetic depletion Flow-cytometric analysis Molecular indexing Phenotyping 

References

  1. 1.
    Ting DT, Wittner BS, Ligorio M et al (2014) Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep 8(6):1905–1918.  https://doi.org/10.1016/j.celrep.2014.08.029CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yee SS, Carpenter EL (2017) Enumeration, dielectrophoretic capture, and molecular analysis of circulating tumor cells BT - circulating tumor cells: methods and protocols. In: Magbanua M, Jesus M, Park JW (eds) Circulating tumor cells. Springer, New York, NY, pp 193–202CrossRefGoogle Scholar
  3. 3.
    Cohen SJ, Punt CJA, Iannotti N et al (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26(19):3213–3221.  https://doi.org/10.1200/JCO.2007.15.8923CrossRefPubMedGoogle Scholar
  4. 4.
    De Bono JS, Scher HI, Montgomery RB et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14(19):6302–6309.  https://doi.org/10.1158/1078-0432.CCR-08-0872CrossRefPubMedGoogle Scholar
  5. 5.
    Cristofanilli M, Budd GT, Ellis MJ et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351:781–791.  https://doi.org/10.1056/NEJMoa040766CrossRefPubMedGoogle Scholar
  6. 6.
    Allard WJ, Matera J, Miller MC et al (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904.  https://doi.org/10.1158/1078-0432.CCR-04-0378CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rhim AD, Mirek ET, Aiello NM et al (2012) EMT and dissemination precede pancreatic tumor formation. Cell 148(1-2):349–361.  https://doi.org/10.1016/j.cell.2011.11.025CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gorges TM, Kuske A, Röck K et al (2016) Accession of tumor heterogeneity by multiplex transcriptome profiling of single circulating tumor cells. Clin Chem 62(11):1504–1515.  https://doi.org/10.1373/clinchem.2016.260299CrossRefPubMedGoogle Scholar
  9. 9.
    Carpenter EL, Rader J, Ruden J et al (2014) Dielectrophoretic capture and genetic analysis of single neuroblastoma tumor cells. Front Oncol 4:201.  https://doi.org/10.3389/fonc.2014.00201CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Peeters DJE, De Laere B, Van Den Eynden GG et al (2013) Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br J Cancer 108(6):1358–1367.  https://doi.org/10.1038/bjc.2013.92CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Karabacak NM, Spuhler PS, Fachin F et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9:694–710.  https://doi.org/10.1038/nprot.2014.044CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Issadore D, Chung J, Shao H et al (2012) Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci Transl Med 4(141):141ra92.  https://doi.org/10.1126/scitranslmed.3003747CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Harb W, Fan A, Tran T et al (2013) Mutational analysis of circulating tumor cells using a novel microfluidic collection device and qPCR assay. Transl Oncol 6(5):528–538.  https://doi.org/10.1593/tlo.13367CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rhim AD, Thege FI, Santana SM et al (2014) Detection of circulating pancreas epithelial cells in patients with pancreatic cystic lesions. Gastroenterology 146(3):647–651.  https://doi.org/10.1053/j.gastro.2013.12.007CrossRefPubMedGoogle Scholar
  15. 15.
    Stott SL, Hsu C-H, Tsukrov DI et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci 107(43):18392–18397.  https://doi.org/10.1073/pnas.1012539107CrossRefPubMedGoogle Scholar
  16. 16.
    Bhagwat N, Dulmage K, Pletcher CH et al (2018) An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Sci Rep 8.  https://doi.org/10.1038/s41598-018-23217-5
  17. 17.
    Lang JE, Scott JH, Wolf DM et al (2015) Expression profiling of circulating tumor cells in metastatic breast cancer. Breast Cancer Res Treat 149:121–131.  https://doi.org/10.1007/s10549-014-3215-0CrossRefPubMedGoogle Scholar
  18. 18.
    Fu GK, Wilhelmy J, Stern D et al (2014) Digital encoding of cellular mRNAs enabling precise and absolute gene expression measurement by single-molecule counting. Anal Chem 86(6):2867–2870.  https://doi.org/10.1021/ac500459pCrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fu GK, Xu W, Wilhelmy J et al (2014) Molecular indexing enables quantitative targeted RNA sequencing and reveals poor efficiencies in standard library preparations. Proc Natl Acad Sci 111(5):1891–1896.  https://doi.org/10.1073/pnas.1323732111CrossRefPubMedGoogle Scholar
  20. 20.
    Yu L, Sa S, Wang L, Dulmage K, Bhagwat N, Yee SS, Sen M, Pletcher CH, Moore JS, Saksena S, Dixon EP, Carpenter EL (2018) An integrated enrichment system to facilitate isolation and molecular characterization of single cancer cells from whole blood. Cytometry A 93(12):1226–1233.  https://doi.org/10.1002/cyto.a.23599CrossRefPubMedGoogle Scholar
  21. 21.
    Mahnke YD, Roederer M (2007) Optimizing a multi-colour immunophenotyping assay. Clin Lab Med 27:469–46v.  https://doi.org/10.1016/j.cll.2007.05.002CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Moen Sen
    • 1
    Email author
  • Ling Wang
    • 2
  • Liping Yu
    • 3
  • Erica L. Carpenter
    • 1
  1. 1.Division of Hematology and Oncology, Department of Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.BD Technologies and InnovationResearch Triangle ParkUSA
  3. 3.Applied Cells, Inc.Santa ClaraUSA

Personalised recommendations