Skip to main content

Micronucleus Analysis by Flow Cytometry

  • Protocol
  • First Online:
Book cover Genotoxicity Assessment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2031))

Abstract

During the last two decades the micronucleus (MN) test has been extensively used as a genotoxicity screening tool of chemicals and in a variety of exploratory and mechanistic investigations. The MN is a biomarker for chromosomal damage or mitotic abnormalities since it can originate from chromosome fragments or whole chromosomes that fail to be incorporated into daughter nuclei during mitosis (Fenech et al., Mutagenesis 26: 125–132, 2011; Kirsch-Volders et al., Arch Toxicol 85: 873–899, 2011). The simplicity of scoring, accuracy, amenability to automation by image analysis or flow cytometry and the readiness to be applied to a variety of cell types either in vitro or in vivo made it a versatile tool that contributed to a large extent in our understanding of key toxicological issues related to genotoxins and their effects at the cellular and organism levels. Recently, the final acceptance of the in vitro MN test Organization for Economic Cooperation and Development (OECD) guideline 487 (OECD, Guideline for testing of chemicals: in vitro mammalian cell micronucleus test 487: in vitro mammalian cell micronucleus test (MNVIT). Organization for Economic Cooperation and Development, Paris, 2010) together with the standard in vivo MN test OECD guideline 474 (OECD, Guideline for the testing of chemicals no. 474 mammalian erythrocyte micronucleus test. Organization for Economic Cooperation and Development, Paris, 1997) further positioned the assay as a key driver in the determination of the genotoxicity potential in exploratory research as well as in the regulatory environment. This book chapter covers to some extent the protocol designs and experimental steps necessary for a successful performance of the MN test and an accurate analysis of the MN by the flow cytometry technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fenech M, Kirsch-Volders M, Natarajan AT et al (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132

    Article  CAS  Google Scholar 

  2. Kirsch-Volders M, Plas G, Elhajouji A et al (2011) The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 85:873–899

    Article  CAS  Google Scholar 

  3. OECD (2010) Guideline for testing of chemicals: in vitro mammalian cell micronucleus test 487: in vitro mammalian cell micronucleus test (MNVIT). Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  4. OECD (1997) Guideline for the testing of chemicals no. 474 mammalian erythrocyte micronucleus test. Organization for Economic Cooperation and Development, Paris

    Google Scholar 

  5. International Conference on Harmonization (2008) Guidance on genotoxicity testing and data interpretation for pharmaceuticals intended for human use S2(R1). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S2_R1/Step4/S2R1_Step4.pdf. Accessed on 5 Mar 2012, Geneva

  6. Corvi R, Albertini S, Hartung T et al (2008) ECVAM retrospective validation of in vitro micronucleus test (MNT). Mutagenesis 23:271–283

    Article  CAS  Google Scholar 

  7. Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36

    Article  CAS  Google Scholar 

  8. Carter SB (1967) Effects of cytochalasins on mammalian cells. Nature 213:261–264

    Article  CAS  Google Scholar 

  9. Elhajouji A, Cunha M, Kirsch-Volders M (1998) Spindle poisons can induce polyploidy by mitotic slippage and micronucleate mononucleates in the cytokinesis-block assay. Mutagenesis 13:193–198

    Article  CAS  Google Scholar 

  10. Decordier I, Cundari E, Kirsch-Volders M (2008) Mitotic checkpoints and the maintenance of the chromosome karyotype. Mutat Res 651:3–13

    Article  CAS  Google Scholar 

  11. Kirsch-Volders M, Sofuni T, Aardema M et al (2003) Report from the in vitro micronucleus assay working group. Mutat Res 540:153–163

    Article  CAS  Google Scholar 

  12. Fenech M (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mutat Res 600:58–66

    Article  CAS  Google Scholar 

  13. Kirkland D, Pfuhler S, Tweats D et al (2007) How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM workshop. Mutat Res 628:31–55

    Article  CAS  Google Scholar 

  14. Avlasevich SL, Bryce SM, Cairns SE et al (2006) In vitro micronucleus scoring by flow cytometry: differential staining of micronuclei versus apoptotic and necrotic chromatin enhances assay reliability. Environ Mol Mutagen 47:56–66

    Article  CAS  Google Scholar 

  15. Bocker W, Muller WU, Streffer C (1995) Image processing algorithms for the automated micronucleus assay in binucleated human lymphocytes. Cytometry 19:283–294

    Article  CAS  Google Scholar 

  16. Bocker W, Streffer C, Muller WU et al (1996) Automated scoring of micronuclei in binucleated human lymphocytes. Int J Radiat Biol 70:529–537

    Article  CAS  Google Scholar 

  17. Bryce SM, Avlasevich SL, Bemis JC et al (2008) Interlaboratory evaluation of a flow cytometric, high content in vitro micronucleus assay. Mutat Res 650:181–195

    Article  CAS  Google Scholar 

  18. Bryce SM, Bemis JC, Avlasevich SL et al (2007) In vitro micronucleus assay scored by flow cytometry provides a comprehensive evaluation of cytogenetic damage and cytotoxicity. Mutat Res 630:78–91

    Article  CAS  Google Scholar 

  19. Castelain P, Van Hummelen P, Deleener A et al (1993) Automated detection of cytochalasin-B blocked binucleated lymphocytes for scoring micronuclei. Mutagenesis 8:285–293

    Article  CAS  Google Scholar 

  20. Decordier I, Papine A, Plas G et al (2009) Automated image analysis of cytokinesis-blocked micronuclei: an adapted protocol and a validated scoring procedure for biomonitoring. Mutagenesis 24:85–93

    Article  CAS  Google Scholar 

  21. Frieauff W, Potter-Locher F, Cordier A et al (1998) Automatic analysis of the in vitro micronucleus test on V79 cells. Mutat Res 413:57–68

    Article  CAS  Google Scholar 

  22. Lukamowicz M, Kirsch-Volders M, Suter W et al (2011) In vitro primary human lymphocyte flow cytometry based micronucleus assay: simultaneous assessment of cell proliferation, apoptosis and MN frequency. Mutagenesis 26:763–770

    Article  CAS  Google Scholar 

  23. Lukamowicz M, Woodward K, Kirsch-Volders M et al (2011) A flow cytometry based in vitro micronucleus assay in TK6 cells-validation using early stage pharmaceutical development compounds. Environ Mol Mutagen 52:363–372

    Article  CAS  Google Scholar 

  24. Lukamowicz-Rajska M, Kirsch-Volders M, Suter W et al (2012) Miniaturized flow cytometry-based in vitro primary human lymphocyte micronucleus assay-validation study. Environ Mol Mutagen 53(4):260–270

    Article  CAS  Google Scholar 

  25. Nusse M, Kramer J (1984) Flow cytometric analysis of micronuclei found in cells after irradiation. Cytometry 5:20–25

    Article  CAS  Google Scholar 

  26. Nusse M, Marx K (1997) Flow cytometric analysis of micronuclei in cell cultures and human lymphocytes: advantages and disadvantages. Mutat Res 392:109–115

    Article  CAS  Google Scholar 

  27. Roman D, Locher F, Suter W et al (1998) Evaluation of a new procedure for the flow cytometric analysis of in vitro, chemically induced micronuclei in V79 cells. Environ Mol Mutagen 32:387–396

    Article  CAS  Google Scholar 

  28. Schreiber GA, Beisker W, Bauchinger M et al (1992) Multiparametric flow cytometric analysis of radiation-induced micronuclei in mammalian cell cultures. Cytometry 13:90–102

    Article  CAS  Google Scholar 

  29. Slavotinek A, Miller E, Taylor GM et al (1995) Micronucleus frequencies in lymphoblastoid cell lines measured with the cytokinesis-block technique and flow cytometry. Mutagenesis 10:439–445

    Article  CAS  Google Scholar 

  30. Tates AD, van Welie MT, Ploem JS (1990) The present state of the automated micronucleus test for lymphocytes. Int J Radiat Biol 58:813–825

    Article  CAS  Google Scholar 

  31. Varga D, Johannes T, Jainta S et al (2004) An automated scoring procedure for the micronucleus test by image analysis. Mutagenesis 19:391–397

    Article  CAS  Google Scholar 

  32. Verhaegen F, Vral A, Seuntjens J et al (1994) Scoring of radiation-induced micronuclei in cytokinesis-blocked human lymphocytes by automated image analysis. Cytometry 17:119–127

    Article  CAS  Google Scholar 

  33. Viaggi S, Braselmann H, Nusse M (1995) Flow cytometric analysis of micronuclei in the CD2+/− subpopulation of human lymphocytes enriched by magnetic separation. Int J Radiat Biol 67:193–202

    Article  CAS  Google Scholar 

  34. Wessels JM, Nusse M (1995) Flow cytometric detection of micronuclei by combined staining of DNA and membranes. Cytometry 19:201–208

    Article  CAS  Google Scholar 

  35. Soejima T, Iida K, Qin T et al (2007) Photoactivated ethidium monoazide directly cleaves bacterial DNA and is applied to PCR for discrimination of live and dead bacteria. Microbiol Immunol 51:763–775

    Article  CAS  Google Scholar 

  36. Heddle JA (1973) A rapid in vivo test for chromosomal damage. Mutat Res 18:187–190

    Article  CAS  Google Scholar 

  37. Schmid W (1975) The micronucleus test. Mutat Res 31:9–15

    Article  CAS  Google Scholar 

  38. Abramsson-Zetterberg L, Grawe J, Zetterberg G (1999) The micronucleus test in rat erythrocytes from bone marrow, spleen and peripheral blood: the response to low doses of ionizing radiation, cyclophosphamide and vincristine determined by flow cytometry. Mutat Res 423:113–124

    Article  CAS  Google Scholar 

  39. Cammerer Z, Schumacher MM, Kirsch-Volders M et al (2010) Flow cytometry peripheral blood micronucleus test in vivo: determination of potential thresholds for aneuploidy induced by spindle poisons. Environ Mol Mutagen 51:278–284

    CAS  PubMed  Google Scholar 

  40. Torous DK, Dertinger SD, Hall NE et al (2000) Enumeration of micronucleated reticulocytes in rat peripheral blood: a flow cytometric study. Mutat Res 465:91–99

    Article  CAS  Google Scholar 

  41. Torous DK, Hall NE, Dertinger SD et al (2001) Flow cytometric enumeration of micronucleated reticulocytes: high transferability among 14 laboratories. Environ Mol Mutagen 38:59–68

    Article  CAS  Google Scholar 

  42. Wakata A, Miyamae Y, Sato S et al (1998) Evaluation of the rat micronucleus test with bone marrow and peripheral blood: summary of the 9th collaborative study by CSGMT/JEMS. MMS. Collaborative Study Group for the Micronucleus Test. Environmental Mutagen Society of Japan. Mammalian Mutagenicity Study Group. Environ Mol Mutagen 32:84–100

    Article  CAS  Google Scholar 

  43. Vander JB, Harris CA, Ellis SR (1963) Reticulocyte counts by means of fluorescence microscopy. J Lab Clin Med 62:132–140

    CAS  PubMed  Google Scholar 

  44. Hayashi M, MacGregor JT, Gatehouse DG et al (2000) In vivo rodent erythrocyte micronucleus assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity testing, and automated scoring. Environ Mol Mutagen 35:234–252

    Article  CAS  Google Scholar 

  45. Hayashi M, Sofuni T, Ishidate M Jr (1984) Kinetics of micronucleus formation in relation to chromosomal aberrations in mouse bone marrow. Mutat Res 127:129–137

    Article  CAS  Google Scholar 

  46. Cammerer Z, Elhajouji A, Suter W (2007) In vivo micronucleus test with flow cytometry after acute and chronic exposures of rats to chemicals. Mutat Res 626:26–33

    Article  CAS  Google Scholar 

  47. Tometsko AM, Torous DK, Dertinger SD (1993) Analysis of micronucleated cells by flow cytometry. 1. Achieving high resolution with a malaria model. Mutat Res 292:129–135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azeddine Elhajouji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Elhajouji, A., Stadelmann, P. (2019). Micronucleus Analysis by Flow Cytometry. In: Dhawan, A., Bajpayee, M. (eds) Genotoxicity Assessment. Methods in Molecular Biology, vol 2031. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9646-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9646-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9645-2

  • Online ISBN: 978-1-4939-9646-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics