Skip to main content

Detection of DNA Double-Strand Breaks Using Pulsed-Field Gel Electrophoresis

  • Protocol
  • First Online:
Genotoxicity Assessment

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2031))

Abstract

DNA is one of the most biologically important targets of exogenous and endogenous toxicants as well as carcinogens. Damage to DNA can be of different types (e.g., DNA adducts, DNA protein cross-links, single-strand breaks, oxidized bases, abasic sites, and double-strand breaks (DSBs)). DSBs are considered the most lethal form of DNA damage for eukaryotic cells, and if left unrepaired or misrepaired, can cause cell death, chromosome instability, and cancer. DSBs can arise in the cells through different sources and can be distinguished as endogenous or exogenous DSBs. Exogenous sources can be chemotherapeutic drugs, irradiation, and environmental chemicals. The endogenous causes of DNA DSBs in the cells are mainly reactive oxygen species and faulty repair of oxidative clustered DNA lesions. Qualitative and quantitative analysis of DNA DSBs is of utmost importance to understand physiologically relevant cellular processes as well as to investigate the genotoxic or clastogenic effects of toxicants. Pulsed-field gel electrophoresis (PFGE) is a widely used method for direct quantification of DNA DSBs. In this method, the cells exposed to DSB-inducing agents are embedded in the agarose blocks and lysed. These agarose blocks containing DNA are then run under multiple electric fields which are at 120° angle, to aid in the movement of large DNA strands. It gives a direct and specific measure of DSBs unlike the foci-based assays. This chapter provides a brief overview of the various commonly used approaches to analyze DNA DSBs and describes the theory, advantages and method of PFGE, for use in cells exposed to DNA DSB inducing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Helleday T, Lo J, van Gent DC et al (2007) DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6(7):923–935

    Article  CAS  Google Scholar 

  2. Delgado JL, Hsieh CM, Chan NL et al (2018) Topoisomerases as anticancer targets. Biochem J 475(2):373–398

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura J, Mutlu E, Sharma V et al (2014) The endogenous exposome. DNA Repair (Amst) 19:3–13

    Article  CAS  PubMed Central  Google Scholar 

  4. Sharma V, Collins LB, Clement JM et al (2014) Molecular dosimetry of endogenous and exogenous O(6)-methyl-dG and N7-methyl-G adducts following low dose [D3]-methylnitrosourea exposures in cultured human cells. Chem Res Toxicol 27(4):480–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ames BN (1989) Endogenous DNA damage as related to cancer and aging. Mutat Res 214(1):41–46

    Article  CAS  PubMed  Google Scholar 

  6. Henderson PT, Delaney JC, Gu F et al (2002) Oxidation of 7,8-dihydro-8-oxoguanine affords lesions that are potent sources of replication errors in vivo. Biochemistry 41(3):914–921

    Article  CAS  PubMed  Google Scholar 

  7. Gautam DK, Misro MM, Chaki SP et al (2006) H2O2 at physiological concentrations modulates Leydig cell function inducing oxidative stress and apoptosis. Apoptosis 11(1):39–46

    Article  CAS  PubMed  Google Scholar 

  8. Liu X, Zweier JL (2001) A real-time electrochemical technique for measurement of cellular hydrogen peroxide generation and consumption: evaluation in human polymorphonuclear leukocytes. Free Radic Biol Med 31(7):894–901

    Article  CAS  PubMed  Google Scholar 

  9. Tunon MJ, Sanchez-Campos S, Gutierrez B et al (2003) Effects of FK506 and rapamycin on generation of reactive oxygen species, nitric oxide production and nuclear factor kappa B activation in rat hepatocytes. Biochem Pharmacol 66(3):439–445

    Article  CAS  PubMed  Google Scholar 

  10. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567(1):1–61

    Article  CAS  PubMed  Google Scholar 

  11. Sage E, Harrison L (2011) Clustered DNA lesion repair in eukaryotes: relevance to mutagenesis and cell survival. Mutat Res 711(1–2):123–133

    Article  CAS  PubMed  Google Scholar 

  12. Kryston TB, Georgiev AB, Pissis P et al (2011) Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 711(1–2):193–201

    Article  CAS  PubMed  Google Scholar 

  13. Asaithamby A, Hu B, Chen DJ (2011) Unrepaired clustered DNA lesions induce chromosome breakage in human cells. Proc Natl Acad Sci U S A 108(20):8293–8298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eccles LJ, O'Neill P, Lomax ME (2011) Delayed repair of radiation induced clustered DNA damage: friend or foe? Mutat Res 711(1–2):134–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254

    Article  CAS  PubMed  Google Scholar 

  16. Heidenreich E, Eisler H (2004) Non-homologous end joining dependency of gamma-irradiation-induced adaptive frameshift mutation formation in cell cycle-arrested yeast cells. Mutat Res 556(1–2):201–208

    Article  CAS  PubMed  Google Scholar 

  17. Rassool FV (2003) DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Lett 193(1):1–9

    Article  CAS  PubMed  Google Scholar 

  18. Narasimhaiah R, Tuchman A, Lin SL et al (2005) Oxidative damage and defective DNA repair is linked to apoptosis of migrating neurons and progenitors during cerebral cortex development in Ku70-deficient mice. Cereb Cortex 15(6):696–707

    Article  PubMed  Google Scholar 

  19. Sharma V, Collins LB, Chen TH et al (2016) Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 7(18):25377–25390

    Article  PubMed  PubMed Central  Google Scholar 

  20. Collins AR, Oscoz AA, Brunborg G et al (2008) The comet assay: topical issues. Mutagenesis 23(3):143–151

    Article  CAS  PubMed  Google Scholar 

  21. Dahm-Daphi J, Sass C, Alberti W (2000) Comparison of biological effects of DNA damage induced by ionizing radiation and hydrogen peroxide in CHO cells. Int J Radiat Biol 76(1):67–75

    Article  CAS  PubMed  Google Scholar 

  22. Katsube T, Mori M, Tsuji H et al (2014) Most hydrogen peroxide-induced histone H2AX phosphorylation is mediated by ATR and is not dependent on DNA double-strand breaks. J Biochem 156(2):85–95

    Article  CAS  PubMed  Google Scholar 

  23. Barnard S, Bouffler S, Rothkamm K (2013) The shape of the radiation dose response for DNA double-strand break induction and repair. Genome Integr 4(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lobrich M, Shibata A, Beucher A et al (2010) gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9(4):662–669

    Article  PubMed  Google Scholar 

  25. Pospelova TV, Demidenko ZN, Bukreeva EI et al (2009) Pseudo-DNA damage response in senescent cells. Cell Cycle 8(24):4112–4118

    Article  CAS  PubMed  Google Scholar 

  26. Bonner WM, Redon CE, Dickey JS et al (2008) GammaH2AX and cancer. Nat Rev Cancer 8(12):957–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37(1):67–75

    Article  CAS  PubMed  Google Scholar 

  28. Herschleb J, Ananiev G, Schwartz DC (2007) Pulsed-field gel electrophoresis. Nat Protoc 2(3):677–684

    Article  CAS  PubMed  Google Scholar 

  29. Singh SK, Wang M, Staudt C et al (2011) Post-irradiation chemical processing of DNA damage generates double-strand breaks in cells already engaged in repair. Nucleic Acids Res 39(19):8416–8429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Francisco DC, Peddi P, Hair JM et al (2008) Induction and processing of complex DNA damage in human breast cancer cells MCF-7 and nonmalignant MCF-10A cells. Free Radic Biol Med 44(4):558–569

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyom Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharma, V., Mohan, V. (2019). Detection of DNA Double-Strand Breaks Using Pulsed-Field Gel Electrophoresis. In: Dhawan, A., Bajpayee, M. (eds) Genotoxicity Assessment. Methods in Molecular Biology, vol 2031. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9646-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9646-9_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9645-2

  • Online ISBN: 978-1-4939-9646-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics