Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83(9):2934–2938
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ratan ZA, Zaman SB, Mehta V et al (2017) Application of fluorescence in situ hybridization (FISH) technique for the detection of genetic aberration in medical science. Cureus 9(6):e1325
PubMed
PubMed Central
Google Scholar
Heng HH, Squire J, Tsui LC (1992) High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc Natl Acad Sci U S A 89(20):9509–9513
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12(4):368–375
CAS
PubMed
CrossRef
Google Scholar
Schrock E, du Manoir S, Veldman T et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273(5274):494–497
CAS
PubMed
CrossRef
Google Scholar
Tanke HJ, Wiegant J, van Gijlswijk RP et al (1999) New strategy for multi-colour fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genet 7(1):2–11
CAS
PubMed
CrossRef
Google Scholar
Bolzer A, Kreth G, Solovei I et al (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3(5):e157
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301
CAS
PubMed
CrossRef
Google Scholar
Deng W, Shi X, Tjian R et al (2015) CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc Natl Acad Sci U S A 112(38):11870–11875
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chen B, Gilbert LA, Cimini BA et al (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7):1479–1491
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6(10):782–792
CAS
PubMed
CrossRef
Google Scholar
Kallioniemi A, Kallioniemi OP, Sudar D et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821
CAS
PubMed
CrossRef
Google Scholar
du Manoir S, Speicher MR, Joos S et al (1993) Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet 90(6):590–610
PubMed
CrossRef
Google Scholar
Riegel M (2014) Human molecular cytogenetics: from cells to nucleotides. Genet Mol Biol 37(1 Suppl):194–209
PubMed
CrossRef
Google Scholar
Kallioniemi OP, Kallioniemi A, Sudar D et al (1993) Comparative genomic hybridization: a rapid new method for detecting and mapping DNA amplification in tumors. Semin Cancer Biol 4(1):41–46
CAS
PubMed
Google Scholar
Zitzelsberger H, Lehmann L, Werner M et al (1997) Comparative genomic hybridisation for the analysis of chromosomal imbalances in solid tumours and haematological malignancies. Histochem Cell Biol 108(4-5):403–417
CAS
PubMed
CrossRef
Google Scholar
Piper J, Rutovitz D, Sudar D et al (1995) Computer image analysis of comparative genomic hybridization. Cytometry 19(1):10–26
CAS
PubMed
CrossRef
Google Scholar
Corso C, Parry EM (1999) The application of comparative genomic hybridization and fluorescence in situ hybridization to the characterization of genotoxicity screening tester strains AHH-1 and MCL-5. Mutagenesis 14(4):417–426
CAS
PubMed
CrossRef
Google Scholar
Carlson KM, Gruber A, Liliemark E et al (1999) Characterization of drug-resistant cell lines by comparative genomic hybridization. Cancer Genet Cytogenet 111(1):32–36
CAS
PubMed
CrossRef
Google Scholar
Corso C, Parry JM (2004) Comparative genomic hybridization analysis of N-methyl-N′-nitrosoguanidine-induced rat gastrointestinal tumors discloses a cytogenetic fingerprint. Environ Mol Mutagen 43(1):20–27
CAS
PubMed
CrossRef
Google Scholar
Payne J, Jones C, Lakhani S et al (2000) Improving the reproducibility of the MCF-7 cell proliferation assay for the detection of xenoestrogens. Sci Total Environ 248(1):51–62
CAS
PubMed
CrossRef
Google Scholar
Kim YM, Yang S, Xu W et al (2008) Continuous in vitro exposure to low-dose genistein induces genomic instability in breast epithelial cells. Cancer Genet Cytogenet 186(2):78–84
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wong N, Lai P, Pang E et al (2000) Genomic aberrations in human hepatocellular carcinomas of differing etiologies. Clin Cancer Res 6(10):4000–4009
CAS
PubMed
Google Scholar
Clarke PA, te Poele R, Wooster R et al (2001) Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential. Biochem Pharmacol 62(10):1311–1336
CAS
PubMed
CrossRef
Google Scholar
Solinas-Toldo S, Lampel S, Stilgenbauer S et al (1997) Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20(4):399–407
CAS
PubMed
CrossRef
Google Scholar
Ylstra B, van den Ijssel P, Carvalho B et al (2006) BAC to the future! or oligonucleotides: a perspective for micro array comparative genomic hybridization (array CGH). Nucleic Acids Res 34(2):445–450
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brennan C, Zhang Y, Leo C et al (2004) High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res 64(14):4744–4748
CAS
PubMed
CrossRef
Google Scholar
Chan VSW, Theilade MD (2005) The use of toxicogenomic data in risk assessment: A regulatory perspective. Clin Toxicol 43(2):121–126
CAS
CrossRef
Google Scholar
Davies JJ, Wilson IM, Lam WL (2005) Array CGH technologies and their applications to cancer genomes. Chromosom Res 13(3):237–248
CAS
CrossRef
Google Scholar
Amin RP, Hamadeh HK, Bushel PR et al (2002) Genomic interrogation of mechanism(s) underlying cellular responses to toxicants. Toxicology 181-182:555–563
CAS
PubMed
CrossRef
Google Scholar
Gerhold D, Lu MQ, Xu J et al (2001) Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays. Physiol Genomics 5(4):161–170
CAS
PubMed
CrossRef
Google Scholar
Aradhya S, Lewis R, Bonaga T et al (2012) Exon-level array CGH in a large clinical cohort demonstrates increased sensitivity of diagnostic testing for Mendelian disorders. Genet Med 14(6):594–603
CAS
PubMed
CrossRef
Google Scholar
Wang J, Zhan H, Li FY et al (2012) Targeted array CGH as a valuable molecular diagnostic approach: experience in the diagnosis of mitochondrial and metabolic disorders. Mol Genet Metab 106(2):221–230
CAS
PubMed
CrossRef
Google Scholar
Hu DG, Webb G, Hussey N (2004) Aneuploidy detection in single cells using DNA array-based comparative genomic hybridization. Mol Hum Reprod 10(4):283–289
CAS
PubMed
CrossRef
Google Scholar
Cheng J, Vanneste E, Konings P et al (2011) Single-cell copy number variation detection. Genome Biol 12(8):R80
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fiegler H, Geigl JB, Langer S et al (2007) High resolution array-CGH analysis of single cells. Nucleic Acids Res 35(3):e15
PubMed
CrossRef
CAS
Google Scholar
Crotwell PL, Hoyme HE (2012) Advances in whole-genome genetic testing: from chromosomes to microarrays. Curr Probl Pediatr Adolesc Health Care 42(3):47–73
PubMed
CrossRef
Google Scholar
Auer H, Newsom DL, Nowak NJ et al (2007) Gene-resolution analysis of DNA copy number variation using oligonucleotide expression microarrays. BMC Genomics 8:111
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Zhao XJ, Li C, Paez JG et al (2004) An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res 64(9):3060–3071
CAS
PubMed
CrossRef
Google Scholar
Le Scouarnec S, Gribble SM (2012) Characterising chromosome rearrangements: recent technical advances in molecular cytogenetics. Heredity (Edinb) 108(1):75–85
CrossRef
CAS
Google Scholar
Schillert A, Ziegler A (2012) Genotype calling for the Affymetrix platform. Methods Mol Biol 850:513–523
PubMed
CrossRef
Google Scholar
Hester SD, Reid L, Nowak N et al (2009) Comparison of comparative genomic hybridization technologies across microarray platforms. J Biomol Tech 20(2):135–151
PubMed
PubMed Central
Google Scholar
Herzog CR, Desai D, Amin S (2006) Array CGH analysis reveals chromosomal aberrations in mouse lung adenocarcinomas induced by the human lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Biochem Biophys Res Commun 341(3):856–863
CAS
PubMed
CrossRef
Google Scholar
Medlin JF (1999) Timely toxicology. Environ Health Perspect 107(5):A256–A258
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Heinloth AN, Shackelford RE, Innes CL et al (2003) Identification of distinct and common gene expression changes after oxidative stress and gamma and ultraviolet radiation. Mol Carcinog 37(2):65–82
CAS
PubMed
CrossRef
Google Scholar
Heinloth AN, Shackelford RE, Innes CL et al (2003) ATM-dependent and -independent gene expression changes in response to oxidative stress, gamma irradiation, and UV irradiation. Radiat Res 160(3):273–290
CAS
PubMed
CrossRef
Google Scholar
Brown N, Finnon R, Manning G et al (2015) Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia. Mutat Res Genet Toxicol Environ Mutagen 793:48–54
CAS
PubMed
CrossRef
Google Scholar
Castagnola P, Malacarne D, Scaruffi P et al (2011) Chromosomal aberrations and aneuploidy in oral potentially malignant lesions: distinctive features for tongue. BMC Cancer 11:445
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fujimoto J, Kadara H, Men T et al (2010) Comparative functional genomics analysis of NNK tobacco-carcinogen induced lung adenocarcinoma development in Gprc5a-knockout mice. PLoS One 5(7):e11847
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Auerbach SS, Shah RR, Mav D et al (2010) Predicting the hepatocarcinogenic potential of alkenylbenzene flavoring agents using toxicogenomics and machine learning. Toxicol Appl Pharmacol 243(3):300–314
CAS
PubMed
CrossRef
Google Scholar
Iwahashi H, Kitagawa E, Suzuki Y et al (2007) Evaluation of toxicity of the mycotoxin citrinin using yeast ORF DNA microarray and Oligo DNA microarray. BMC Genomics 8:95
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Huang Y, Fernandez SV, Goodwin S et al (2007) Epithelial to mesenchymal transition in human breast epithelial cells transformed by 17beta-estradiol. Cancer Res 67(23):11147–11157
CAS
PubMed
CrossRef
Google Scholar
Hong HJ, Koom WS, Koh WG (2017) Cell microarray technologies for high-throughput cell-based biosensors. Sensors (Basel) 17(6):E1293
CrossRef
CAS
Google Scholar
Grant GR, Manduchi E, Stoeckert CJ Jr (2007) Analysis and management of microarray gene expression data [chapter 19, unit 6]. Curr Protoc Mol Biol 77(1):1–30
Google Scholar
Vermeesch JR, Melotte C, Froyen G et al (2005) Molecular karyotyping: array CGH quality criteria for constitutional genetic diagnosis. J Histochem Cytochem 53(3):413–422
CAS
PubMed
CrossRef
Google Scholar
Guha S, Li Y, Neuberg D (2008) Bayesian Hidden Markov Modeling of Array CGH Data. J Am Stat Assoc 103(482):485–497
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Zhang L, Zhang L (2013) Use of autocorrelation scanning in DNA copy number analysis. Bioinformatics 29(21):2678–2682
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Shaw-Smith C, Redon R, Rickman L et al (2004) Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41(4):241–248
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371
CAS
PubMed
CrossRef
Google Scholar
Brazma A (2009) Minimum information about a microarray experiment (MIAME)—successes, failures, challenges. ScientificWorldJournal 9:420–423
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Liu Y, Li A, Feng H et al (2015) TAFFYS: An Integrated Tool for Comprehensive Analysis of Genomic Aberrations in Tumor Samples. PLoS One 10(6):e0129835
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Quigley D (2015) Equalizer reduces SNP bias in Affymetrix microarrays. BMC Bioinformatics 16:238
PubMed
PubMed Central
CrossRef
Google Scholar
Mayrhofer M, Viklund B, Isaksson A (2016) Rawcopy: Improved copy number analysis with Affymetrix arrays. Sci Rep 6:36158
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Morgan AP (2015) argyle: an R package for analysis of illumina genotyping arrays. G3 (Bethesda) 6(2):281–286
CrossRef
CAS
Google Scholar
Tice RR, Austin CP, Kavlock RJ et al (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121(7):756–765
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Aardema MJ, MacGregor JT (2002) Toxicology and genetic toxicology in the new era of “toxicogenomics”: impact of “-omics” technologies. Mutat Res 499(1):13–25
CAS
PubMed
CrossRef
Google Scholar
Ruden DM, Gurdziel K, Aschner M (2017) Frontiers in toxicogenomics in the twenty-first century-the grand challenge: to understand how the genome and epigenome interact with the toxic environment at the single-cell, whole-organism, and multi-generational level. Front Genet 8:173
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Mahadevan B, Snyder RD, Waters MD et al (2011) Genetic toxicology in the 21st century: reflections and future directions. Environ Mol Mutagen 52(5):339–354
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
OECD (2009) Series on testing and assessment no. 100 - Report of the second survey on available omics tools (ENV/JM/MONO(2008)35). Available at http://www.oecd.org/officialdocuments/displaydocument/?cote=env/jm/mono(2008)35&doclanguage=en. Accessed 22 June 2018
Karahalil B (2016) Overview of systems biology and omics technologies. Curr Med Chem 23(37):4221–4230
CAS
PubMed
CrossRef
Google Scholar
Vrana KE, Freeman WM, Aschner M (2003) Use of microarray technologies in toxicology research. Neurotoxicology 24(3):321–332
CAS
PubMed
CrossRef
Google Scholar
Song Y, Asselman J, De Schamphelaere KAC et al (2018) Deciphering the combined effects of environmental stressors on gene transcription: a conceptual approach. Environ Sci Technol 52(9):5479–5489
CAS
PubMed
CrossRef
Google Scholar
Jeong J, Choi J (2017) Use of adverse outcome pathways in chemical toxicity testing: potential advantages and limitations. Environ Health Toxicol 33(1):e2018002
PubMed
PubMed Central
CrossRef
Google Scholar
Mattingly CJ, Rosenstein MC, Davis AP et al (2006) The comparative toxicogenomics database: a cross-species resource for building chemical-gene interaction networks. Toxicol Sci 92(2):587–595
CAS
PubMed
CrossRef
Google Scholar
Davis AP, Grondin CJ, Johnson RJ et al (2017) The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res 45(D1):D972–D978
CAS
PubMed
CrossRef
Google Scholar
Davis AP, Wiegers TC, Wiegers J et al (2018) Chemical-induced phenotypes at CTD help inform the predisease state and construct adverse outcome pathways. Toxicol Sci 165(1):145–156
CAS
PubMed
CrossRef
PubMed Central
Google Scholar
Grondin CJ, Davis AP, Wiegers TC et al (2018) Accessing an expanded exposure science module at the Comparative Toxicogenomics Database. Environ Health Perspect 126(1):014501
PubMed
PubMed Central
CrossRef
Google Scholar
Young RR (2002) Genetic toxicology: web resources. Toxicology 173(1-2):103–121
CAS
PubMed
CrossRef
Google Scholar
Lea IA, Gong H, Paleja A et al (2017) CEBS: a comprehensive annotated database of toxicological data. Nucleic Acids Res 45(D1):D964–D971
CAS
PubMed
CrossRef
Google Scholar
Nuwaysir EF, Bittner M, Trent J et al (1999) Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinog 24(3):153–159
CAS
PubMed
CrossRef
Google Scholar
Andersen ME, Krewski D (2009) Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci 107(2):324–330
CAS
PubMed
CrossRef
Google Scholar
Testing CoT, Assessment of Environmental Agents NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. The National Academies Press, Washington, D.C.
Google Scholar
Andersen ME, Al-Zoughool M, Croteau M et al (2010) The future of toxicity testing. J Toxicol Environ Health B Crit Rev 13(2-4):163–196
CAS
PubMed
CrossRef
Google Scholar
Andersen ME, Krewski D (2010) The vision of toxicity testing in the 21st century: moving from discussion to action. Toxicol Sci 117(1):17–24
CAS
PubMed
CrossRef
Google Scholar
Jacobs A (2009) An FDA perspective on the nonclinical use of the X-Omics technologies and the safety of new drugs. Toxicol Lett 186(1):32–35
CAS
PubMed
CrossRef
Google Scholar
Hendrickx DM, Boyles RR, Kleinjans JC et al (2014) Workshop report: identifying opportunities for global integration of toxicogenomics databases, 26-27 June 2013, Research Triangle Park, NC, USA. Arch Toxicol 88(12):2323–2332
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bhattacharya S, Zhang Q, Carmichael PL et al (2011) Toxicity testing in the 21 century: defining new risk assessment approaches based on perturbation of intracellular toxicity pathways. PLoS One 6(6):e20887
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Krewski D, Westphal M, Al-Zoughool M et al (2011) New directions in toxicity testing. Annu Rev Public Health 32:161–178
PubMed
CrossRef
Google Scholar
Moffat I, Chepelev N, Labib S et al (2015) Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 45(1):1–43
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chepelev NL, Moffat ID, Labib S et al (2015) Integrating toxicogenomics into human health risk assessment: lessons learned from the benzo[a]pyrene case study. Crit Rev Toxicol 45(1):44–52
CAS
PubMed
CrossRef
Google Scholar
Jean-Quartier C, Jeanquartier F, Jurisica I et al (2018) In silico cancer research towards 3R. BMC Cancer 18(1):408
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Vachon J, Page-Lariviere F, Sirard MA et al (2018) Availability, quality, and relevance of toxicogenomics data for human health risk assessment: a scoping review of the literature on trihalomethanes. Toxicol Sci 163(2):364–373
CAS
PubMed
CrossRef
Google Scholar
Farmahin R, Williams A, Kuo B et al (2017) Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Arch Toxicol 91(5):2045–2065
CAS
PubMed
CrossRef
Google Scholar
Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725
CAS
PubMed
CrossRef
Google Scholar
Zhang L, Cui X, Schmitt K et al (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A 89(13):5847–5851
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Huber R, Kulka U, Lorch T et al (2001) Technical report: application of the Metafer2 fluorescence scanning system for the analysis of radiation-induced chromosome aberrations measured by FISH-chromosome painting. Mutat Res 492(1-2):51–57
CAS
PubMed
CrossRef
Google Scholar
Bangs CD, Donlon TA (2005) Metaphase chromosome preparation from cultured peripheral blood cells. Curr Protoc Hum Genet Chapter 4:Unit 4.1
PubMed
Google Scholar
du Manoir S, Kallioniemi OP, Lichter P et al (1995) Hardware and software requirements for quantitative analysis of comparative genomic hybridization. Cytometry 19(1):4–9
PubMed
CrossRef
Google Scholar
du Manoir S, Schrock E, Bentz M et al (1995) Quantitative analysis of comparative genomic hybridization. Cytometry 19(1):27–41
PubMed
CrossRef
Google Scholar
Lundsteen C, Maahr J, Christensen B et al (1995) Image analysis in comparative genomic hybridization. Cytometry 19(1):42–50
CAS
PubMed
CrossRef
Google Scholar