Skip to main content

Design, Synthesis, and Functional Analysis of Highly Specific Artificial Small RNAs with Antiviral Activity in Plants

  • Protocol
  • First Online:
Antiviral Resistance in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2028))

Abstract

Artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) are two classes of artificial small RNAs (sRNAs) that have been broadly used to confer antiviral resistance in plants. However, methods for designing, synthesizing and functionally analyzing antiviral artificial sRNAs have not been optimized for time and cost-effectiveness and high-throughput applicability since recently. Here we present a systematic methodology for the simple and fast-forward design, generation, and functional analysis of large numbers of artificial sRNA constructs engineered to induce high levels of antiviral resistance in plants. Artificial sRNA constructs are transiently expressed in Nicotiana benthamiana plants, which are subsequently inoculated with the virus of interest. The antiviral activity of each artificial sRNA construct is assessed by monitoring viral symptom appearance, and through molecular analysis of virus accumulation in plant tissues. This approach is aimed to easily identify artificial sRNAs with high antiviral activity that could be expressed in transgenic plants for highly durable antiviral resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carbonell A (2017) Artificial small RNA-based strategies for effective and specific gene silencing in plants. In: Dalmay T (ed) Plant gene silencing: mechanisms and applications. CABI Publishing, Boston, MA, pp 110–127

    Chapter  Google Scholar 

  2. Carbonell A (2017) Plant ARGONAUTEs: features, functions, and unknowns. Methods Mol Biol 1640:1–21. https://doi.org/10.1007/978-1-4939-7165-7_1

    Article  CAS  PubMed  Google Scholar 

  3. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24(11):1420–1428. https://doi.org/10.1038/nbt1255

    Article  CAS  PubMed  Google Scholar 

  4. Lin SS, Wu HW, Elena SF, Chen KC, Niu QW, Yeh SD, Chen CC, Chua NH (2009) Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog 5(2):e1000312. https://doi.org/10.1371/journal.ppat.1000312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lafforgue G, Martinez F, Sardanyes J, de la Iglesia F, Niu QW, Lin SS, Sole RV, Chua NH, Daros JA, Elena SF (2011) Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. J Virol 85(19):9686–9695. https://doi.org/10.1128/JVI.05326-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fahim M, Millar AA, Wood CC, Larkin PJ (2012) Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J 10(2):150–163. https://doi.org/10.1111/j.1467-7652.2011.00647.x

    Article  CAS  PubMed  Google Scholar 

  7. Kung YJ, Lin SS, Huang YL, Chen TC, Harish SS, Chua NH, Yeh SD (2012) Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus. Mol Plant Pathol 13(3):303–317. https://doi.org/10.1111/j.1364-3703.2011.00747.x

    Article  CAS  PubMed  Google Scholar 

  8. Lafforgue G, Martinez F, Niu QW, Chua NH, Daros JA, Elena SF (2013) Improving the effectiveness of artificial microRNA (amiR)-mediated resistance against Turnip mosaic virus by combining two amiRs or by targeting highly conserved viral genomic regions. J Virol 87(14):8254–8256. https://doi.org/10.1128/JVI.00914-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kis A, Tholt G, Ivanics M, Varallyay E, Jenes B, Havelda Z (2016) Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol 17(3):427–437. https://doi.org/10.1111/mpp.12291

    Article  CAS  PubMed  Google Scholar 

  10. Carbonell A, Carrington JC, Daros JA (2016) Fast-forward generation of effective artificial small RNAs for enhanced antiviral defense in plants. RNA Dis 3(1)

    Google Scholar 

  11. Chen L, Cheng X, Cai J, Zhan L, Wu X, Liu Q, Wu X (2016) Multiple virus resistance using artificial trans-acting siRNAs. J Virol Methods 228:16–20. https://doi.org/10.1016/j.jviromet.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  12. Carbonell A, Daros JA (2017) Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection. Mol Plant Pathol 18(5):746–753. https://doi.org/10.1111/mpp.12529

    Article  CAS  PubMed  Google Scholar 

  13. Carbonell A, Takeda A, Fahlgren N, Johnson SC, Cuperus JT, Carrington JC (2014) New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis. Plant Physiol 165(1):15–29. https://doi.org/10.1104/pp.113.234989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carbonell A, Fahlgren N, Mitchell S, Cox KL Jr, Reilly KC, Mockler TC, Carrington JC (2015) Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors. Plant J 82(6):1061–1075. https://doi.org/10.1111/tpj.12835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fahlgren N, Hill ST, Carrington JC, Carbonell A (2016) P-SAMS: a web site for plant artificial microRNA and synthetic trans-acting small interfering RNA design. Bioinformatics 32(1):157–158. https://doi.org/10.1093/bioinformatics/btv534

    Article  CAS  PubMed  Google Scholar 

  16. Carbonell A, López C, Daròs JA (2019) Fast-forward identification of highly effective artificial small RNAs against different Tomato spotted wilt virus isolates. Mol Plant-Microbe Interact 32(2):142–156. https://doi.org/10.1094/MPMI-05-18-0117-TA

    Article  CAS  Google Scholar 

  17. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133(1):128–141. https://doi.org/10.1016/j.cell.2008.02.033

    Article  CAS  Google Scholar 

  18. Mitter N, Zhai Y, Bai AX, Chua K, Eid S, Constantin M, Mitchell R, Pappu HR (2016) Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus. Virus Res 211:151–158. https://doi.org/10.1016/j.virusres.2015.10.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Ministerio de Ciencia, Innovación y Universidades (MCIU, Spain), Agencia Estatal de Investigación (AEI, Spain) and Fondo Europeo de Desarrollo Regional (FEDER, European Union) [RTI2018-095118-A-100 and RYC-2017-21648 to A.C.; BIO2017-83184-R to J.-A.D.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Carbonell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carbonell, A., Daròs, JA. (2019). Design, Synthesis, and Functional Analysis of Highly Specific Artificial Small RNAs with Antiviral Activity in Plants. In: Kobayashi, K., Nishiguchi, M. (eds) Antiviral Resistance in Plants. Methods in Molecular Biology, vol 2028. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9635-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9635-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9634-6

  • Online ISBN: 978-1-4939-9635-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics