Skip to main content

Computational Workflow for Small RNA Profiling in Virus-Infected Plants

Part of the Methods in Molecular Biology book series (MIMB,volume 2028)

Abstract

In this chapter we describe a series of computational pipelines for the in silico analysis of small RNAs (sRNA) produced in response to viral infections in plants. Our workflow is primarily focused on the analysis of sRNA populations derived from known or previously undescribed viruses infecting host plants. Furthermore, we provide an additional pipeline to examine host-specific endogenous sRNAs activated or specifically expressed during viral infections in plants. We present some key points for a successful and cost-efficient processing of next generation sequencing sRNA libraries, from purification of high quality RNA to guidance for library preparation and sequencing strategies. We report a series of free available tools and programs as well as in-house Perl scripts to perform customized sRNA-seq data mining. Previous bioinformatic background is not required, but experience with basic Unix commands is desirable.

Key words

  • Plant viruses
  • Small RNAs
  • Antiviral silencing
  • sRNA-seq
  • Bioinformatic analysis
  • Next generation sequencing

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9635-3_11
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9635-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    CrossRef  CAS  Google Scholar 

  2. Llave C (2010) Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends Plant Sci 15:701–707

    CrossRef  CAS  Google Scholar 

  3. Head SR, Kiyomi Komori H, LaMere SA et al (2014) Library construction for next-generation sequencing: Overviews and challenges. BioTechniques 56:61–77

    CrossRef  CAS  Google Scholar 

  4. McCormick KP, Willmann MR, Meyers BC (2011) Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence 2:2

    CrossRef  CAS  Google Scholar 

  5. Fahlgren N, Sullivan CM, Kasschau KD et al (2009) Computational and analytical framework for small RNA profiling by high-throughput sequencing. RNA 15:992–1002

    CrossRef  CAS  Google Scholar 

  6. Farazi TA, Brown M, Morozov P et al (2012) Bioinformatic analysis of barcoded cDNA libraries for small RNA profiling by next-generation sequencing. Methods 58:171–187

    CrossRef  CAS  Google Scholar 

  7. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39:2010–2012

    Google Scholar 

  8. Andrews S (2017) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 30 Oct 2017

  9. Lindgreen S (2012) AdapterRemoval: easy cleaning of next generation sequencing reads. BMC Res Notes 5:337–343

    CrossRef  Google Scholar 

  10. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    CrossRef  Google Scholar 

  11. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    CrossRef  Google Scholar 

  12. Seguin J, Otten P, Baerlocher L et al (2014) MISIS: a bioinformatics tool to view and analyze maps of small RNAs derived from viruses and genomic loci generating multiple small RNAs. J Virol Methods 195:120–122

    CrossRef  CAS  Google Scholar 

  13. Roberts A, Pachter L (2017) eXpress: streaming quantification for high-throughput sequencing. https://pachterlab.github.io/eXpress/overview.html. Accessed 30 Oct 2017

  14. Donovan WP, Zhang Y, Howell MD (2011) Large-scale sequencing of plant small RNAs. Methods Mol Biol 744:159–173

    CrossRef  CAS  Google Scholar 

  15. Hafner M, Renwick N, Farazi TA et al (2012) Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods 58:164–170

    CrossRef  CAS  Google Scholar 

  16. Babu CVS, Gassmann M (2016) Assessing integrity of plant RNA with the Agilent 2100 Bioanalyzer System. Agil Appl Note, Waldbronn, pp 5990–8850E

    Google Scholar 

  17. Donaire L, Wang Y, Gonzalez-Ibeas D et al (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214

    CrossRef  CAS  Google Scholar 

  18. Zheng Y, Gao S, Padmanabhan C et al (2017) VirusDetect: an automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology 500:130–138

    CrossRef  CAS  Google Scholar 

  19. Cao M, Du P, Wang X et al (2014) Virus infection triggers widespread silencing of host genes by a distinct class of endogenous siRNAs in Arabidopsis. Proc Natl Acad Sci U S A 111:14613–14618

    CrossRef  CAS  Google Scholar 

  20. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26

    CrossRef  CAS  Google Scholar 

  21. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619

    CrossRef  CAS  Google Scholar 

  22. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    CrossRef  Google Scholar 

  23. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CrossRef  CAS  Google Scholar 

  24. Ho T, Tzanetakis IE (2014) Development of a virus detection and discovery pipeline using next generation sequencing. Virology 471–473:54–60

    CrossRef  Google Scholar 

  25. Watson M, Schnettler E, Kohl A (2013) ViRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics 29:1902–1903

    CrossRef  CAS  Google Scholar 

  26. Illumina, Inc (2017) Effects of index misassignment on multiplexing and downstream analysis. https://www.illumina.com/content/dam/illumina-marketing/documents/products/whitepapers/index-hopping-white-paper-770-2017-004.pdf. Accessed 30 Oct 2017.

  27. Bray NL, Pimentel H, Melsted P et al (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527

    CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Grants BIO2012-39973, PCIN-2013-064, and BIO2015-70752 from Ministerio de Economía y Competitividad, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Llave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Donaire, L., Llave, C. (2019). Computational Workflow for Small RNA Profiling in Virus-Infected Plants. In: Kobayashi, K., Nishiguchi, M. (eds) Antiviral Resistance in Plants. Methods in Molecular Biology, vol 2028. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9635-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9635-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9634-6

  • Online ISBN: 978-1-4939-9635-3

  • eBook Packages: Springer Protocols