Skip to main content

Identification and Analysis of Mouse Erythroid Progenitor Cells

  • Protocol
  • First Online:
Book cover Progenitor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2029))

Abstract

The most common cell type in the human body, the red blood cell or erythrocyte, has a life span of approximately 3 months. To compensate for this massive cellular requirement and short life span, the major blood producing tissues contain vast numbers of erythroid progenitor cells. Erythroid progenitors differentiate progressively from hematopoietic stem cells to committed erythroid progenitors to reticulocytes lacking a nucleus and finally to functionally mature erythrocytes in the circulation. Different erythroid progenitor activity, representative of distinct stages of erythropoiesis, can be observed using semisolid colony assays. Distinct stages of erythroid maturation can also be monitored by flow cytometry. Here, we discuss the range of different technical approaches that are used to identify and quantify erythroid progenitors, with particular focus on the mouse as a model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maximow A (1909) Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere, Folia Haematologica. pp 125–134

    Google Scholar 

  2. Lappin TR, Rich IN (1996) Erythropoietin—the first 90 years. Clin Lab Haematol 18:137–145

    Article  CAS  Google Scholar 

  3. Mizel SB, Farrar JJ (1979) Revised nomenclature for antigen-nonspecific T cell proliferation and helper factors. Cell Immunol 48(2):433–436

    Article  CAS  Google Scholar 

  4. Orkin SH, Zon LI (2008) SnapShot: hematopoiesis. Cell 132:712.e1–712.e2

    Article  Google Scholar 

  5. Al-Drees MA, Yeo JH, Boumelhem BB et al (2015) Making blood: the haematopoietic niche throughout ontogeny. Stem Cells Int 2015:571893

    Article  Google Scholar 

  6. Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5:3

    Article  Google Scholar 

  7. Sanchez M, Weissman IL, Pallavicini M et al (2006) Differential amplification of murine bipotent megakaryocytic/erythroid progenitor and precursor cells during recovery from acute and chronic erythroid stress. Stem Cells 24:337–348

    Article  Google Scholar 

  8. Chen K, Liu J, Heck S et al (2009) Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci 106:17413–17418

    Article  CAS  Google Scholar 

  9. Kina T, Ikuta K, Takayama E et al (2000) The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 109:280–287

    Article  CAS  Google Scholar 

  10. Socolovsky M, Nam H-S, Fleming MD et al (2001) Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98(12):3261–3273

    Article  CAS  Google Scholar 

  11. Koulnis M, Pop R, Porpiglia E et al (2011) Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. J Vis Exp e2809–e2809

    Google Scholar 

  12. Fraser ST, Isern J, Baron MH (2007) Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109:343–352

    Article  CAS  Google Scholar 

  13. Yeo JH, McAllan BM, Fraser ST (2016) Scanning electron microscopy reveals two distinct classes of erythroblastic island isolated from adult mammalian bone marrow. Microsc Microanal 22:368–378

    Article  CAS  Google Scholar 

  14. Palis J, Robertson S, Kennedy M et al (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126:5073–5084

    CAS  PubMed  Google Scholar 

  15. Fraser ST, Midwinter RG, Berger BS et al (2011) Heme oxygenase-1: a critical link between iron metabolism, erythropoiesis, and development. Adv Hematol 2011:1–6

    Article  Google Scholar 

  16. Baron MH, Isern J, Fraser ST (2012) The embryonic origins of erythropoiesis in mammals. Blood 119:4828–4837

    Article  CAS  Google Scholar 

  17. Wong PM, Chung SW, Reicheld SM et al (1986) Hemoglobin switching during murine embryonic development: evidence for two populations of embryonic erythropoietic progenitor cells. Blood 67:716–721

    CAS  PubMed  Google Scholar 

  18. Isern J, He Z, Fraser ST et al (2011) Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo. Blood 117:4924–4934

    Article  CAS  Google Scholar 

  19. Iscove NN, Sieber F (1975) Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp Hematol 3:32–43

    CAS  PubMed  Google Scholar 

  20. Lodish H, Flygare J, Chou S (2010) From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones. IUBMB Life 62:492–496

    Article  CAS  Google Scholar 

  21. Stephenson JR, Axelrad AA, McLeod DL et al (1971) Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci U S A 68:1542–1546

    Article  CAS  Google Scholar 

  22. Wu H, Liu X, Jaenisch R et al (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83:59–67

    Article  CAS  Google Scholar 

  23. Hattangadi SM, Wong P, Zhang L et al (2011) From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs and chromatin modifications. Blood 118(24):6258–6268

    Article  CAS  Google Scholar 

  24. Terszowski G (2005) Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E). Blood 105:1937–1945

    Article  CAS  Google Scholar 

  25. Stumpf M, Waskow C, Krötschel M et al (2006) The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc Natl Acad Sci U S A 103:18504–18509

    Article  CAS  Google Scholar 

  26. Flygare J, Estrada VR, Shin C et al (2011) HIF1 synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood 117:3435–3444

    Article  CAS  Google Scholar 

  27. Tusi BK, Wolock SL, Weinreb C et al (2018) Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555:54–60

    Article  CAS  Google Scholar 

  28. Li J, Hale J, Bhagia P et al (2014) Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood 124:3636–3645

    Article  CAS  Google Scholar 

  29. Lenox LE, Perry JM, Paulson RF (2005) BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 105:2741–2748

    Article  CAS  Google Scholar 

  30. Perry JM, Harandi OF, Paulson RF (2007) BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood 109:4494–4502

    Article  CAS  Google Scholar 

  31. Perry JM, Harandi OF, Porayette P et al (2009) Maintenance of the BMP4-dependent stress erythropoiesis pathway in the murine spleen requires hedgehog signaling. Blood 113:911–918

    Article  CAS  Google Scholar 

  32. Socolovsky M (2007) Molecular insights into stress erythropoiesis. Curr Opin Hematol 14:215–224

    Article  Google Scholar 

  33. Porayette P, Paulson RF (2008) BMP4/Smad5 dependent stress erythropoiesis is required for the expansion of erythroid progenitors during fetal development. Dev Biol 317:24–35

    Article  CAS  Google Scholar 

  34. Harandi OF, Hedge S, Wu D-C et al (2010) Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J Clin Invest 120:4507–4519

    Article  CAS  Google Scholar 

  35. Xiang J, Wu DC, Chen Y et al (2015) In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors. Blood 125:1803–1812

    Article  CAS  Google Scholar 

  36. Antoniou M (1991) Induction of erythroid-specific expression in murine erythroleukemia (MEL) cell lines. Methods Mol Biol 7:421–434

    CAS  PubMed  Google Scholar 

  37. Socolovsky M (2001) Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98:3261–3273

    Article  CAS  Google Scholar 

  38. Fraser ST, Isern J, Baron MH (2010) Use of transgenic fluorescent reporter mouse lines to monitor hematopoietic and erythroid development during embryogenesis. Methods Enzymol 476:403–427

    Article  CAS  Google Scholar 

  39. Nakano T, Kodama H, Honjo T (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265:1098–1101

    Article  CAS  Google Scholar 

  40. Fraser ST, Ogawa M, Yu RT et al (2002) Definitive hematopoietic commitment within the embryonic vascular endothelial-cadherin(+) population. Exp Hematol 30:1070–1078

    Article  CAS  Google Scholar 

  41. Schroeder T, Fraser ST, Ogawa M et al (2003) Recombination signal sequence-binding protein Jkappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc Natl Acad Sci U S A 100:4018–4023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart T. Fraser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Colonne, C.K., Yeo, J.H., McKenzie, C.V., Fraser, S.T. (2019). Identification and Analysis of Mouse Erythroid Progenitor Cells. In: Joglekar, M., Hardikar, A. (eds) Progenitor Cells. Methods in Molecular Biology, vol 2029. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9631-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9631-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9630-8

  • Online ISBN: 978-1-4939-9631-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics