Skip to main content

Parallelized Microscale Expression of Soluble scFv

Part of the Methods in Molecular Biology book series (MIMB,volume 2025)

Abstract

Antibody phage display is a key technology to generate recombinant, mainly human, antibodies for diagnostic and therapy, but also as tools for basic research. After antibody selection by “panning,” a crucial step is the screening of monoclonal binders to isolate those which show antigen specificity. For this screening procedure, a highly parallelized approach to produce soluble antibody fragments in microtiter plates is essential. In this chapter, we give the protocol for the parallelized microscale production of scFvs for the screening procedure or further assays.

Key words

  • Phage display
  • Single-chain fragment variable (scFv)
  • Monoclonal antibody screening
  • Small-scale antibody production in MTP

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9624-7_9
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   209.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9624-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   269.00
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Trott M, Weiß S, Antoni S et al (2014) Functional characterization of two scFv-Fc antibodies from an HIV controller selected on soluble HIV-1 Env complexes: a neutralizing V3- and a trimer-specific gp41 antibody. PLoS One 9:e97478

    CrossRef  Google Scholar 

  2. Chan S-W, Bye JM, Jackson P, Allain J-P (1996) Human recombinant antibodies specific for hepatitis C virus core and envelope E2 peptides from an immune phage display library. J Gen Virol 77:2531–2539

    CAS  CrossRef  Google Scholar 

  3. Schofield DJ, Pope AR, Clementel V et al (2007) Application of phage display to high throughput antibody generation and characterization. Genome Biol 8:R254

    CrossRef  Google Scholar 

  4. Glanville J, Zhai W, Berka J et al (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A 106:20216–20221

    CAS  CrossRef  Google Scholar 

  5. de Wildt RMT, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody–antigen interactions. Nat Biotechnol 18:989–994

    CrossRef  Google Scholar 

  6. Hust M, Meyer T, Voedisch B et al (2011) A human scFv antibody generation pipeline for proteome research. J Biotechnol 152:159–170

    CAS  CrossRef  Google Scholar 

  7. Kügler J, Wilke S, Meier D et al (2015) Generation and analysis of the improved human HAL9/10 antibody phage display libraries. BMC Biotechnol 15:10

    CrossRef  Google Scholar 

  8. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in clinical development and therapy. MAbs 8:1177–1194

    CAS  CrossRef  Google Scholar 

  9. Parmley SF, Smith GP (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73:305–318

    CAS  CrossRef  Google Scholar 

  10. Breitling F, Dübel S, Seehaus T et al (1991) A surface expression vector for antibody screening. Gene 104:147–153

    CAS  CrossRef  Google Scholar 

  11. Hawlisch H, Müller M, Frank R et al (2001) Site-specific anti-C3a receptor single-chain antibodies selected by differential panning on cellulose sheets. Anal Biochem 293:142–145

    CAS  CrossRef  Google Scholar 

  12. Moghaddam A, Borgen T, Stacy J et al (2003) Identification of scFv antibody fragments that specifically recognise the heroin metabolite 6-monoacetylmorphine but not morphine. J Immunol Methods 280:139–155

    CAS  CrossRef  Google Scholar 

  13. Hust M, Maiss E, Jacobsen H-J, Reinard T (2002) The production of a genus-specific recombinant antibody (scFv) using a recombinant potyvirus protease. J Virol Methods 106:225–233

    CAS  CrossRef  Google Scholar 

  14. Schütte M, Thullier P, Pelat T et al (2009) Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus. PLoS One 4:e6625

    CrossRef  Google Scholar 

  15. Keller T, Kalt R, Raab I et al (2015) Selection of scFv antibody fragments binding to human blood versus lymphatic endothelial surface antigens by direct cell phage display. PLoS One 10:e0127169

    CrossRef  Google Scholar 

  16. Rezaei J, RajabiBazl M, Ebrahimizadeh W et al (2016) Selection of single chain antibody fragments for targeting prostate specific membrane antigen: a comparison between cell-based and antigen-based approach. Protein Pept Lett 23:336–342

    CAS  CrossRef  Google Scholar 

  17. Russo G, Meier D, Helmsing S et al (2018) Parallelized antibody selection in microtiter plates. Methods Mol Biol 1701:273–284

    CAS  CrossRef  Google Scholar 

  18. Ayriss J, Woods T, Bradbury A, Pavlik P (2007) High-throughput screening of single-chain antibodies using multiplexed flow cytometry. J Proteome Res 6:1072–1082

    CAS  CrossRef  Google Scholar 

  19. Hoet RM, Cohen EH, Kent RB et al (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23:344–348

    CAS  CrossRef  Google Scholar 

  20. Jäger V, Büssow K, Wagner A et al (2013) High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol 13:52

    CrossRef  Google Scholar 

  21. Konthur Z, Hust M, Dübel S (2005) Perspectives for systematic in vitro antibody generation. Gene 364:19–29

    CAS  CrossRef  Google Scholar 

  22. Hust M, Steinwand M, Al-Halabi L et al (2009) Improved microtitre plate production of single chain Fv fragments in Escherichia coli. New Biotechnol 25:424–428

    CAS  CrossRef  Google Scholar 

  23. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  24. Goffinet M, Chinestra P, Lajoie-Mazenc I et al (2008) Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection. BMC Biotechnol 8:34

    CrossRef  Google Scholar 

  25. Lillo AM, Ayriss JE, Shou Y et al (2011) Development of phage-based single chain Fv antibody reagents for detection of Yersinia pestis. PLoS One 6:e27756

    CAS  CrossRef  Google Scholar 

  26. Welschof M, Terness P, Kipriyanov SM et al (1997) The antigen-binding domain of a human IgG-anti-F(ab’)2 autoantibody. Proc Natl Acad Sci U S A 94:1902–1907

    CAS  CrossRef  Google Scholar 

  27. Goletz S, Christensen PA, Kristensen P et al (2002) Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 315:1087–1097

    CAS  CrossRef  Google Scholar 

  28. Finnern R, Pedrollo E, Fisch I et al (1997) Human autoimmune anti-proteinase 3 scFv from a phage display library. Clin Exp Immunol 107:269–281

    CAS  CrossRef  Google Scholar 

  29. Pelat T, Hust M, Laffly E et al (2007) High-Affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51:2758–2764

    CAS  CrossRef  Google Scholar 

  30. Kirsch M, Hülseweh B, Nacke C et al (2008) Development of human antibody fragments using antibody phage display for the detection and diagnosis of Venezuelan equine encephalitis virus (VEEV). BMC Biotechnol 8:66

    CrossRef  Google Scholar 

  31. Mersmann M, Schmidt A, Tesar M et al (1998) Monitoring of scFv selected by phage display using detection of scFv-pIII fusion proteins in a microtiter scale assay. J Immunol Methods 220:51–58

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

The support within the EU program “Affinomics” is gratefully acknowledged.

This chapter is an updated and revised version of the MTP production protocol included in Russo et al. 2018 Molecular Methods [17].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Dübel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Russo, G., Fühner, V., Frenzel, A., Hust, M., Dübel, S. (2019). Parallelized Microscale Expression of Soluble scFv. In: Vincentelli, R. (eds) High-Throughput Protein Production and Purification. Methods in Molecular Biology, vol 2025. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9624-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9624-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9623-0

  • Online ISBN: 978-1-4939-9624-7

  • eBook Packages: Springer Protocols