Skip to main content

High-Throughput Purification of Protein Kinases from Escherichia coli and Insect Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 2025)

Abstract

Protein kinases are major targets for the development of new medicines and play key roles in cellular signaling. The flexible nature of these proteins, posttranslational modifications, and the large size of some protein kinases pose a particular challenge obtaining homogeneous, active recombinant protein kinases suitable for functional or structural studies. Here we describe our expertise expressing protein kinases in two frequently used host systems: E. coli and insect cells using the baculovirus expression vector system. In particular, we will discuss and provide detailed methods on construct design, high-throughput cloning, parallel expression testing and scale up as well as purification and co-expression strategies leading to stable and homogeneous recombinant protein samples.

Key words

  • Kinase expression
  • E. coli
  • Insect cells
  • Co-expression
  • Phosphatases

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9624-7_8
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   209.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9624-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   269.00
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934. https://doi.org/10.1126/science.1075762

    CAS  CrossRef  PubMed  Google Scholar 

  2. Soundararajan M, Roos AK, Savitsky P, Filippakopoulos P, Kettenbach AN, Olsen JV, Gerber SA, Eswaran J, Knapp S, Elkins JM (2013) Structures of down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 21(6):986–996. https://doi.org/10.1016/j.str.2013.03.012

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Kornev AP, Haste NM, Taylor SS, Eyck LF (2006) Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci U S A 103(47):17783–17788. https://doi.org/10.1073/pnas.0607656103

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Nolen B, Taylor S, Ghosh G (2004) Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15(5):661–675. https://doi.org/10.1016/j.molcel.2004.08.024

    CAS  CrossRef  PubMed  Google Scholar 

  5. Oliver AW, Knapp S, Pearl LH (2007) Activation segment exchange: a common mechanism of kinase autophosphorylation? Trends Biochem Sci 32(8):351–356. https://doi.org/10.1016/j.tibs.2007.06.004

    CAS  CrossRef  PubMed  Google Scholar 

  6. Shrestha A, Hamilton G, O’Neill E, Knapp S, Elkins JM (2012) Analysis of conditions affecting auto-phosphorylation of human kinases during expression in bacteria. Protein Expr Purif 81(1):136–143. https://doi.org/10.1016/j.pep.2011.09.012

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S (2008) Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134(5):793–803. https://doi.org/10.1016/j.cell.2008.07.047

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Linding R, Russell RB, Neduva V, Gibson TJ (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31(13):3701–3708

    CAS  CrossRef  Google Scholar 

  9. McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405

    CAS  CrossRef  Google Scholar 

  10. Varshavsky A (1997) The N-end rule pathway of protein degradation. Genes Cells 2(1):13–28

    CAS  CrossRef  Google Scholar 

  11. Haun RS, Serventi IM, Moss J (1992) Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors. BioTechniques 13(4):515–518

    CAS  PubMed  Google Scholar 

  12. Strain-Damerell C, Mahajan P, Gileadi O, Burgess-Brown NA (2014) Medium-throughput production of recombinant human proteins: ligation-independent cloning. Methods Mol Biol 1091:55–72. https://doi.org/10.1007/978-1-62703-691-7_4

    CAS  CrossRef  PubMed  Google Scholar 

  13. Geertsma ER, Dutzler R (2011) A versatile and efficient high-throughput cloning tool for structural biology. Biochemistry 50(15):3272–3278. https://doi.org/10.1021/bi200178z

    CAS  CrossRef  PubMed  Google Scholar 

  14. Burgess-Brown NA, Mahajan P, Strain-Damerell C, Gileadi O, Graslund S (2014) Medium-throughput production of recombinant human proteins: protein production in E. coli. Methods Mol Biol 1091:73–94. https://doi.org/10.1007/978-1-62703-691-7_5

    CAS  CrossRef  PubMed  Google Scholar 

  15. Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13(4):213–217

    CAS  CrossRef  Google Scholar 

  16. Wickham TJ, Davis T, Granados RR, Shuler ML, Wood HA (1992) Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog 8(5):391–396. https://doi.org/10.1021/bp00017a003

    CAS  CrossRef  PubMed  Google Scholar 

  17. Mahajan P, Strain-Damerell C, Gileadi O, Burgess-Brown NA (2014) Medium-throughput production of recombinant human proteins: protein production in insect cells. Methods Mol Biol 1091:95–121. https://doi.org/10.1007/978-1-62703-691-7_6

    CAS  CrossRef  PubMed  Google Scholar 

  18. Seeliger MA, Young M, Henderson MN, Pellicena P, King DS, Falick AM, Kuriyan J (2005) High yield bacterial expression of active c-Abl and c-Src tyrosine kinases. Protein Sci 14(12):3135–3139. https://doi.org/10.1110/ps.051750905

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support by the SGC, a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, Canada Foundation for Innovation, Eshelman Institute for Innovation, Genome Canada through Ontario Genomics Institute, Innovative Medicines Initiative (EU/EFPIA) [ULTRA-DD grant no. 115766], Janssen, Merck & Co., Novartis Pharma AG, Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation-FAPESP, Takeda, the Centre of Excellence (CEF) Macromolecular Complexes at Frankfurt University, and the Wellcome Trust. SK and SM are grateful for support by the German Cancer Centre (DKFZ) and the German Cancer Network (DKTK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Knapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Mathea, S., Salah, E., Knapp, S. (2019). High-Throughput Purification of Protein Kinases from Escherichia coli and Insect Cells. In: Vincentelli, R. (eds) High-Throughput Protein Production and Purification. Methods in Molecular Biology, vol 2025. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9624-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9624-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9623-0

  • Online ISBN: 978-1-4939-9624-7

  • eBook Packages: Springer Protocols