Botstein D, Fink GR (2011) Yeast: an experimental organism for 21st Century biology. Genetics 189:695–704. https://doi.org/10.1534/genetics.111.130765
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kell DB, Brown M, Davey HM et al (2005) Metabolic footprinting and systems biology: the medium is the message. Nat Rev Microbiol 3:557–565. https://doi.org/10.1038/nrmicro1177
CAS
CrossRef
PubMed
Google Scholar
Picotti P, Clément-Ziza M, Lam H et al (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–270. https://doi.org/10.1038/nature11835
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Annaluru N, Muller H, Mitchell LA et al (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344:55–58. https://doi.org/10.1126/science.1249252
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Richardson SM, Mitchell LA, Stracquadanio G et al (2017) Design of a synthetic yeast genome. Science 355:1040–1044. https://doi.org/10.1126/science.aaf4557
CAS
CrossRef
PubMed
Google Scholar
Marsit S, Leducq J-B, Durand É et al (2017) Evolutionary biology through the lens of budding yeast comparative genomics. Nat Rev Genet 18:581–598. https://doi.org/10.1038/nrg.2017.49
CAS
CrossRef
PubMed
Google Scholar
Resnick MA, Cox BS (2000) Yeast as an honorary mammal. Mutat Res 451:1–11
CAS
CrossRef
Google Scholar
Meehl MA, Stadheim TA (2014) Biopharmaceutical discovery and production in yeast. Curr Opin Biotechnol 30:120–127. https://doi.org/10.1016/j.copbio.2014.06.007
CAS
CrossRef
PubMed
Google Scholar
Mehla J, Caufield JH, Uetz P (2015) The yeast two-hybrid system: a tool for mapping protein-protein interactions. Cold Spring Harb Protoc 2015:425–430. https://doi.org/10.1101/pdb.top083345
CrossRef
PubMed
Google Scholar
Young KH (1998) Yeast Two-hybrid: so many interactions, (in) so little time… . Biol Reprod 58:302–311. https://doi.org/10.1095/biolreprod58.2.302
CAS
CrossRef
PubMed
Google Scholar
Brückner A, Polge C, Lentze N et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10:2763–2788. https://doi.org/10.3390/ijms10062763
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hall DA, Zhu H, Zhu X et al (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482–484. https://doi.org/10.1126/science.1096773
CAS
CrossRef
PubMed
Google Scholar
Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeastPichia pastoris. FEMS Microbiol Rev 24:45–66. https://doi.org/10.1111/j.1574-6976.2000.tb00532.x
CAS
CrossRef
PubMed
Google Scholar
Bill RM (2014) Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments. Front Microbiol 5:85. https://doi.org/10.3389/fmicb.2014.00085
CrossRef
PubMed
PubMed Central
Google Scholar
Gellissen G, Kunze G, Gaillardin C et al (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison. FEMS Yeast Res 5:1079–1096. https://doi.org/10.1016/j.femsyr.2005.06.004
CAS
CrossRef
PubMed
Google Scholar
Fernández FJ, López-Estepa M, Querol-García J, Vega MC (2016) Production of protein complexes in non-methylotrophic and methylotrophic yeasts: nonmethylotrophic and methylotrophic yeasts. Adv Exp Med Biol 896:137–153. https://doi.org/10.1007/978-3-319-27216-0_9
CAS
CrossRef
PubMed
Google Scholar
Fernández FJ, Vega MC (2016) Choose a suitable expression host: a survey of available protein production platforms. Adv Exp Med Biol 896:15–24. https://doi.org/10.1007/978-3-319-27216-0_2
CAS
CrossRef
PubMed
Google Scholar
Fernández FJ, Vega MC (2013) Technologies to keep an eye on: alternative hosts for protein production in structural biology. Curr Opin Struct Biol 23:365–373. https://doi.org/10.1016/j.sbi.2013.02.002
CAS
CrossRef
PubMed
Google Scholar
DiDonato M, Deacon AM, Klock HE et al (2004) A scaleable and integrated crystallization pipeline applied to mining the Thermotoga maritima proteome. J Struct Funct Genom 5:133–146. https://doi.org/10.1023/B:JSFG.0000029194.04443.50
CAS
CrossRef
Google Scholar
Fang Z, van der Merwe RG, Warren RM et al (2015) Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics. Tuberculosis (Edinb) 95:131–136. https://doi.org/10.1016/j.tube.2014.12.005
CAS
CrossRef
Google Scholar
Vieth M, Sutherland JJ, Robertson DH, Campbell RM (2005) Kinomics: characterizing the therapeutically validated kinase space. Drug Discov Today 10:839–846. https://doi.org/10.1016/S1359-6446(05)03477-X
CAS
CrossRef
PubMed
Google Scholar
Saez NJ, Nozach H, Blemont M, Vincentelli R (2014) High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli. J Vis Exp 89:e51464. https://doi.org/10.3791/51464
CrossRef
Google Scholar
Turchetto J, Sequeira AF, Ramond L et al (2017) High-throughput expression of animal venom toxins in Escherichia coli to generate a large library of oxidized disulphide-reticulated peptides for drug discovery. Microb Cell Factories 16:6. https://doi.org/10.1186/s12934-016-0617-1
CAS
CrossRef
Google Scholar
Kim MD, Lee TH, Lim HK, Seo JH (2004) Production of antithrombotic hirudin in GAL1-disrupted Saccharomyces cerevisiae. Appl Microbiol Biotechnol 65:259–262. https://doi.org/10.1007/s00253-004-1598-2
CAS
CrossRef
PubMed
Google Scholar
Rohde JR, Trinh J, Sadowski I (2000) Multiple signals regulate GAL transcription in yeast. Mol Cell Biol 20:3880–3886
CAS
CrossRef
Google Scholar
Denis CL, Ferguson J, Young ET (1983) mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J Biol Chem 258:1165–1171
CAS
PubMed
Google Scholar
Gatignol A, Dassain M, Tiraby G (1990) Cloning of Saccharomyces cerevisiae promoters using a probe vector based on phleomycin resistance. Gene 91:35–41
CAS
CrossRef
Google Scholar
Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (NY) 11:905–910
CAS
Google Scholar
Ellis SB, Brust PF, Koutz PJ et al (1985) Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol Cell Biol 5:1111–1121
CAS
CrossRef
Google Scholar
Montoliu-Gaya L, Esquerda-Canals G, Bronsoms S, Villegas S (2017) Production of an anti-Aβ antibody fragment in Pichia pastoris and in vitro and in vivo validation of its therapeutic effect. PLoS One 12:e0181480. https://doi.org/10.1371/journal.pone.0181480
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Aw R, McKay PF, Shattock RJ, Polizzi KM (2017) Expressing anti-HIV VRC01 antibody using the murine IgG1 secretion signal in Pichia pastoris. AMB Express 7:70. https://doi.org/10.1186/s13568-017-0372-7
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Vogl T, Sturmberger L, Kickenweiz T et al (2016) A toolbox of diverse promoters related to methanol utilization: functionally verified parts for heterologous pathway expression in Pichia pastoris. ACS Synth Biol 5:172–186. https://doi.org/10.1021/acssynbio.5b00199
CAS
CrossRef
PubMed
Google Scholar
Purcell O, Opdensteinen P, Chen W et al (2017) Production of functional anti-ebola antibodies in Pichia pastoris. ACS Synth Biol 6(12):2183–2190. https://doi.org/10.1021/acssynbio.7b00234
CAS
CrossRef
PubMed
Google Scholar
Cai Y, Yao S, Zhong J et al (2017) Inhibition activity of a disulfide-stabilized diabody against basic fibroblast growth factor in lung cancer. Oncotarget 8:20187–20197. https://doi.org/10.18632/oncotarget.15556
CrossRef
PubMed
PubMed Central
Google Scholar
Pourasadi S, Mousavi Gargari SL, Rajabibazl M, Nazarian S (2017) Efficient production of nanobodies against urease activity ofHelicobacter pylori in Pichia pastoris. Turk J Med Sci 47:695–701. https://doi.org/10.3906/sag-1509-121
CAS
CrossRef
PubMed
Google Scholar
Schwarzhans J-P, Luttermann T, Wibberg D et al (2017) A mitochondrial autonomously replicating sequence from Pichia pastoris for uniform high level recombinant protein production. Front Microbiol 8:780. https://doi.org/10.3389/fmicb.2017.00780
CrossRef
PubMed
PubMed Central
Google Scholar
Camattari A, Goh A, Yip LY et al (2016) Characterization of a panARS-based episomal vector in the methylotrophic yeast Pichia pastoris for recombinant protein production and synthetic biology applications. Microb Cell Factories 15:139. https://doi.org/10.1186/s12934-016-0540-5
CAS
CrossRef
Google Scholar
Koskela EV, de Ruijter JC, Frey AD (2017) Following nature’s roadmap: folding factors from plasma cells led to improvements in antibody secretion in S. cerevisiae. Biotechnol J 12:8. https://doi.org/10.1002/biot.201600631
CAS
CrossRef
Google Scholar
Huang M, Bai Y, Sjostrom SL et al (2015) Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast. Proc Natl Acad Sci U S A 112:E4689–E4696. https://doi.org/10.1073/pnas.1506460112
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Drew D, Newstead S, Sonoda Y et al (2008) GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc 3:784–798. https://doi.org/10.1038/nprot.2008.44
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Abatemarco J, Sarhan MF, Wagner JM et al (2017) RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes. Nat Commun 8:332. https://doi.org/10.1038/s41467-017-00425-7
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Kota J, Gilstring CF, Ljungdahl PO (2007) Membrane chaperone Shr3 assists in folding amino acid permeases preventing precocious ERAD. J Cell Biol 176:617–628. https://doi.org/10.1083/jcb.200612100
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Henricsson C, de Jesus Ferreira MC, Hedfalk K et al (2005) Engineering of a novel Saccharomyces cerevisiae wine strain with a respiratory phenotype at high external glucose concentrations. Appl Environ Microbiol 71:6185–6192. https://doi.org/10.1128/AEM.71.10.6185-6192.2005
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ferndahl C, Bonander N, Logez C et al (2010) Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory. Microb Cell Factories 9:47. https://doi.org/10.1186/1475-2859-9-47
CAS
CrossRef
Google Scholar
Küberl A, Schneider J, Thallinger GG et al (2011) High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol 154:312–320. https://doi.org/10.1016/j.jbiotec.2011.04.014
CAS
CrossRef
PubMed
Google Scholar