Skip to main content

Overview of a High-Throughput Pipeline for Streamlining the Production of Recombinant Proteins

Part of the Methods in Molecular Biology book series (MIMB,volume 2025)

Abstract

Production of high quality protein is an essential step for both structural and functional studies. Throughput has increased in the past decade by the use of streamlined workflows with standard operating procedures and automation. In this chapter, we describe the Oxford Protein Production Facility (OPPF) pipeline for protein production, from conception, through vector construction, to expression and purification. Results from projects run in the OPPF demonstrate the value of using parallel expression screening of intracellular proteins in both E. coli and insect cells. Transient expression in Human Embryonic Kidney (HEK) cells is used exclusively for production of secreted glycoproteins. Protein purification and quality assessment are independent of the expression system and enable sample preparation to be simplified and streamlined.

Key words

  • Recombinant protein production
  • High throughput
  • E. coli
  • Insect cells
  • HEK cells

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9624-7_2
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   209.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9624-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   269.00
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Yang ZR et al (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21(16):3369–3376

    CAS  CrossRef  Google Scholar 

  2. Kelley LA et al (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    CAS  CrossRef  Google Scholar 

  3. Pajon A et al (2005) Design of a data model for developing laboratory information management and analysis systems for protein production. Proteins 58(2):278–284

    CAS  CrossRef  Google Scholar 

  4. Morris C et al (2011) The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory. Acta Crystallogr D Biol Crystallogr 67(Pt 4):249–260

    CAS  CrossRef  Google Scholar 

  5. Berrow NS et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35(6):e45

    CrossRef  Google Scholar 

  6. Berrow NS, Alderton D, Owens RJ (2009) The precise engineering of expression vectors using high-throughput In-Fusion PCR cloning. Methods Mol Biol 498:75–90

    CAS  CrossRef  Google Scholar 

  7. Bird LE (2011) High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods 55(1):29–37

    CAS  CrossRef  Google Scholar 

  8. Bird LE et al (2014) Application of In-Fusion cloning for the parallel construction of E. coli expression vectors. Methods Mol Biol 1116:209–234

    CAS  CrossRef  Google Scholar 

  9. Zhao Y, Chapman DA, Jones IM (2003) Improving baculovirus recombination. Nucleic Acids Res 31(2):E6–E6

    CrossRef  Google Scholar 

  10. Nettleship JE et al (2010) Recent advances in the production of proteins in insect and mammalian cells for structural biology. J Struct Biol 172(1):55–65

    CAS  CrossRef  Google Scholar 

  11. Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1243–1250

    CrossRef  Google Scholar 

  12. Durocher Y, Perret S, Kamen A (2002) High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Res 30(2):E9

    CrossRef  Google Scholar 

  13. Nettleship JE et al (2015) Transient expression in HEK 293 cells: an alternative to E. coli for the production of secreted and intracellular mammalian proteins. Methods Mol Biol 1258:209–222

    CAS  CrossRef  Google Scholar 

  14. Brown MH, Barclay AN (1994) Expression of immunoglobulin and scavenger receptor superfamily domains as chimeric proteins with domains 3 and 4 of CD4 for ligand analysis. Protein Eng 7(4):515–521

    CAS  CrossRef  Google Scholar 

  15. Nettleship JE, Rahman-Huq N, Owens RJ (2009) The production of glycoproteins by transient expression in Mammalian cells. Methods Mol Biol 498:245–263

    CAS  CrossRef  Google Scholar 

  16. Chang VT et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15(3):267–273

    CAS  CrossRef  Google Scholar 

  17. Nettleship JE et al (2008) Methods for protein characterization by mass spectrometry, thermal shift (ThermoFluor) assay, and multiangle or static light scattering. Methods Mol Biol 426:299–318

    CAS  CrossRef  Google Scholar 

  18. Nettleship JE et al (2012) Converting monoclonal antibodies into Fab fragments for transient expression in mammalian cells. Methods Mol Biol 801:137–159

    CAS  CrossRef  Google Scholar 

  19. Joshi HJ, Gupta R (2015) Eukaryotic glycosylation: online methods for site prediction on protein sequences. In: Lütteke T, Frank M (eds) Glycoinformatics. Springer, New York, pp 127–137

    CrossRef  Google Scholar 

  20. Steentoft C et al (2013) Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 32(10):1478–1488

    CAS  CrossRef  Google Scholar 

  21. Berman HM et al (2000) The protein data bank. Nucleic Acids Res 28(1):235–242

    CAS  CrossRef  Google Scholar 

  22. Gasteiger E et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607

    CrossRef  Google Scholar 

  23. Petersen TN et al (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786

    CAS  CrossRef  Google Scholar 

  24. Moller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7):646–653

    CAS  CrossRef  Google Scholar 

  25. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169

    CrossRef  Google Scholar 

Download references

Acknowledgements

The OPPF was funded by the Medical Research Council, UK (grant MR/K018779/1). The authors wish to thank Louise Bird for help with data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Owens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Nettleship, J.E., Rada, H., Owens, R.J. (2019). Overview of a High-Throughput Pipeline for Streamlining the Production of Recombinant Proteins. In: Vincentelli, R. (eds) High-Throughput Protein Production and Purification. Methods in Molecular Biology, vol 2025. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9624-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9624-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9623-0

  • Online ISBN: 978-1-4939-9624-7

  • eBook Packages: Springer Protocols