Skip to main content

Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants

  • 2133 Accesses

Part of the Methods in Molecular Biology book series (MIMB,volume 2025)

Abstract

Highly soluble and stable proteins are desirable for many different applications, from basic science to reaching a cancer patient in the form of a biological drug. For X-ray crystallography—where production of a protein crystal might take weeks and even months—a stable protein sample of high purity and concentration can greatly increase the chances of producing a well-diffracting crystal. For a patient receiving a specific protein drug, its safety, efficacy, and even cost are factors affected by its solubility and stability. Increased protein expression and protein stability can be achieved by randomly altering the coding sequence. As the number of mutants generated might be overwhelming, a powerful protein expression and stability screen is required. In this chapter, we describe a colony filtration technology, which allows us to screen random mutagenesis libraries for increased thermal stability—the Hot CoFi blot. We share how to create the random mutagenesis library, how to perform the Hot CoFi blot, and how to identify more thermally stable clones. We use the Tobacco Etch Virus protease as a target to exemplify the procedure.

Key words

  • Colony screen
  • Protein expression
  • Error-prone PCR
  • Thermal stability
  • Hot CoFi

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9624-7_14
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   209.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9624-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   269.00
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Arndt MA, Krauss J, Schwarzenbacher R, Vu BK, Greene S, Rybak SM (2003) Generation of a highly stable, internalizing anti-CD22 single-chain Fv fragment for targeting non-Hodgkin’s lymphoma. Int J Cancer 107(5):822–829. https://doi.org/10.1002/ijc.11451

    CAS  CrossRef  PubMed  Google Scholar 

  2. Chirino AJ, Mire-Sluis A (2004) Characterizing biological products and assessing comparability following manufacturing changes. Nat Biotechnol 22(11):1383–1391. https://doi.org/10.1038/nbt1030

    CAS  CrossRef  PubMed  Google Scholar 

  3. Huus K, Havelund S, Olsen HB, van de Weert M, Frokjaer S (2005) Thermal dissociation and unfolding of insulin. Biochemistry 44(33):11171–11177. https://doi.org/10.1021/bi0507940

    CAS  CrossRef  PubMed  Google Scholar 

  4. Mulinacci F, Capelle MA, Gurny R, Drake AF, Arvinte T (2011) Stability of human growth hormone: influence of methionine oxidation on thermal folding. J Pharm Sci 100(2):451–463

    CAS  CrossRef  Google Scholar 

  5. Radek JT, Castellino FJ (1988) A differential scanning calorimetric investigation of the domains of recombinant tissue plasminogen activator. Arch Biochem Biophys 267(2):776–786

    CAS  CrossRef  Google Scholar 

  6. Schellekens H (2002) Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov 1(6):457–462. https://doi.org/10.1038/nrd818

    CAS  CrossRef  PubMed  Google Scholar 

  7. Willuda J, Honegger A, Waibel R, Schubiger PA, Stahel R, Zangemeister-Wittke U, Pluckthun A (1999) High thermal stability is essential for tumor targeting of antibody fragments: engineering of a humanized anti-epithelial glycoprotein-2 (epithelial cell adhesion molecule) single-chain Fv fragment. Cancer Res 59(22):5758–5767

    CAS  PubMed  Google Scholar 

  8. Wakankar AA, Feeney MB, Rivera J, Chen Y, Kim M, Sharma VK, Wang YJ (2010) Physicochemical stability of the antibody-drug conjugate Trastuzumab-DM1: changes due to modification and conjugation processes. Bioconjug Chem 21(9):1588–1595. https://doi.org/10.1021/bc900434c

    CAS  CrossRef  PubMed  Google Scholar 

  9. Roberts CJ (2014) Protein aggregation and its impact on product quality. Curr Opin Biotechnol 30:211–217. https://doi.org/10.1016/j.copbio.2014.08.001

    CAS  CrossRef  PubMed  Google Scholar 

  10. Erickson B, Nelson WP (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7(2):176–185. https://doi.org/10.1002/biot.201100069

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Luan CH, Qiu S, Finley JB, Carson M, Gray RJ, Huang W, Johnson D, Tsao J, Reboul J, Vaglio P, Hill DE, Vidal M, Delucas LJ, Luo M (2004) High-throughput expression of C. elegans proteins. Genome Res 14(10B):2102–2110. https://doi.org/10.1101/gr.2520504

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Lesley SA (2001) High-throughput proteomics: protein expression and purification in the postgenomic world. Protein Expr Purif 22(2):159–164. https://doi.org/10.1006/prep.2001.1465

    CAS  CrossRef  PubMed  Google Scholar 

  13. Sorensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microb Cell Factories 4(1):1. https://doi.org/10.1186/1475-2859-4-1

    CAS  CrossRef  Google Scholar 

  14. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128. https://doi.org/10.1016/j.jbiotec.2004.08.004

    CAS  CrossRef  PubMed  Google Scholar 

  15. Chen Y, Qiu S, Luan CH, Luo M (2008) A high throughput platform for eukaryotic genes. Methods Mol Biol 426:209–220. https://doi.org/10.1007/978-1-60327-058-8_13

    CAS  CrossRef  PubMed  Google Scholar 

  16. Knaust RK, Nordlund P (2001) Screening for soluble expression of recombinant proteins in a 96-well format. Anal Biochem 297(1):79–85. https://doi.org/10.1006/abio.2001.5331

    CAS  CrossRef  PubMed  Google Scholar 

  17. Lueking A, Horn M, Eickhoff H, Bussow K, Lehrach H, Walter G (1999) Protein microarrays for gene expression and antibody screening. Anal Biochem 270(1):103–111. https://doi.org/10.1006/abio.1999.4063

    CAS  CrossRef  PubMed  Google Scholar 

  18. Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512–538

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, Cort JR, Booth V, Mackereth CD, Saridakis V, Ekiel I, Kozlov G, Maxwell KL, Wu N, McIntosh LP, Gehring K, Kennedy MA, Davidson AR, Pai EF, Gerstein M, Edwards AM, Arrowsmith CH (2000) Structural proteomics of an archaeon. Nat Struct Biol 7(10):903–909. https://doi.org/10.1038/82823

    CAS  CrossRef  PubMed  Google Scholar 

  20. Edwards AM, Arrowsmith CH, Christendat D, Dharamsi A, Friesen JD, Greenblatt JF, Vedadi M (2000) Protein production: feeding the crystallographers and NMR spectroscopists. Nat Struct Biol 7(Suppl):970–972. https://doi.org/10.1038/80751

    CAS  CrossRef  PubMed  Google Scholar 

  21. Roodveldt C, Aharoni A, Tawfik DS (2005) Directed evolution of proteins for heterologous expression and stability. Curr Opin Struct Biol 15(1):50–56. https://doi.org/10.1016/j.sbi.2005.01.001

    CAS  CrossRef  PubMed  Google Scholar 

  22. Welch M, Govindarajan S, Ness JE, Villalobos A, Gurney A, Minshull J, Gustafsson C (2009) Design parameters to control synthetic gene expression in Escherichia coli. PLoS One 4(9):e7002. https://doi.org/10.1371/journal.pone.0007002

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Bjork A, Dalhus B, Mantzilas D, Sirevag R, Eijsink VG (2004) Large improvement in the thermal stability of a tetrameric malate dehydrogenase by single point mutations at the dimer-dimer interface. J Mol Biol 341(5):1215–1226. https://doi.org/10.1016/j.jmb.2004.06.079

    CAS  CrossRef  PubMed  Google Scholar 

  24. Eijsink VG, Bjork A, Gaseidnes S, Sirevag R, Synstad B, van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113(1–3):105–120. https://doi.org/10.1016/j.jbiotec.2004.03.026

    CAS  CrossRef  PubMed  Google Scholar 

  25. Fitzgerald J, Lugovskoy A (2011) Rational engineering of antibody therapeutics targeting multiple oncogene pathways. MAbs 3(3):299–309

    CrossRef  Google Scholar 

  26. Courtois F, Schneider CP, Agrawal NJ, Trout BL (2015) Rational design of biobetters with enhanced stability. J Pharm Sci 104(8):2433–2440. https://doi.org/10.1002/jps.24520

    CAS  CrossRef  PubMed  Google Scholar 

  27. Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM (2008) Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol 381(2):324–340. https://doi.org/10.1016/j.jmb.2008.05.063

    CAS  CrossRef  PubMed  Google Scholar 

  28. Dumon C, Varvak A, Wall MA, Flint JE, Lewis RJ, Lakey JH, Morland C, Luginbuhl P, Healey S, Todaro T, DeSantis G, Sun M, Parra-Gessert L, Tan X, Weiner DP, Gilbert HJ (2008) Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J Biol Chem 283(33):22557–22564. https://doi.org/10.1074/jbc.M800936200

    CAS  CrossRef  PubMed  Google Scholar 

  29. Giver L, Gershenson A, Freskgard PO, Arnold FH (1998) Directed evolution of a thermostable esterase. Proc Natl Acad Sci U S A 95(22):12809–12813

    CAS  CrossRef  Google Scholar 

  30. Hao J, Berry A (2004) A thermostable variant of fructose bisphosphate aldolase constructed by directed evolution also shows increased stability in organic solvents. Protein Eng Des Sel 17(9):689–697. https://doi.org/10.1093/protein/gzh081

    CAS  CrossRef  PubMed  Google Scholar 

  31. Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable alpha-amylase. J Biol Chem 277(29):26501–26507. https://doi.org/10.1074/jbc.M203183200

    CAS  CrossRef  PubMed  Google Scholar 

  32. Wang Q, Xia T (2008) Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Biotechnol Lett 30(5):937–944. https://doi.org/10.1007/s10529-007-9508-1

    CAS  CrossRef  PubMed  Google Scholar 

  33. Worn A, Auf der Maur A, Escher D, Honegger A, Barberis A, Pluckthun A (2000) Correlation between in vitro stability and in vivo performance of anti-GCN4 intrabodies as cytoplasmic inhibitors. J Biol Chem 275(4):2795–2803

    CAS  CrossRef  Google Scholar 

  34. Zumarraga M, Bulter T, Shleev S, Polaina J, Martinez-Arias A, Plou FJ, Ballesteros A, Alcalde M (2007) In vitro evolution of a fungal laccase in high concentrations of organic cosolvents. Chem Biol 14(9):1052–1064. https://doi.org/10.1016/j.chembiol.2007.08.010

    CAS  CrossRef  PubMed  Google Scholar 

  35. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491. https://doi.org/10.1038/nature07101

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Warne T, Serrano-Vega MJ, Tate CG, Schertler GF (2009) Development and crystallization of a minimal thermostabilised G protein-coupled receptor. Protein Expr Purif 65(2):204–213

    CAS  CrossRef  Google Scholar 

  37. Andrews SR, Taylor EJ, Pell G, Vincent F, Ducros VM, Davies GJ, Lakey JH, Gilbert HJ (2004) The use of forced protein evolution to investigate and improve stability of family 10 xylanases. The production of Ca2+−independent stable xylanases. J Biol Chem 279(52):54369–54379. https://doi.org/10.1074/jbc.M409044200

    CAS  CrossRef  PubMed  Google Scholar 

  38. van den Berg S, Lofdahl PA, Hard T, Berglund H (2006) Improved solubility of TEV protease by directed evolution. J Biotechnol 121(3):291–298. https://doi.org/10.1016/j.jbiotec.2005.08.006

    CAS  CrossRef  PubMed  Google Scholar 

  39. Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expr Purif 59(1):94–102. https://doi.org/10.1016/j.pep.2008.01.008

    CAS  CrossRef  PubMed  Google Scholar 

  40. Reetz MT, Wu S (2009) Laboratory evolution of robust and enantioselective Baeyer-Villiger monooxygenases for asymmetric catalysis. J Am Chem Soc 131(42):15424–15432. https://doi.org/10.1021/ja906212k

    CAS  CrossRef  PubMed  Google Scholar 

  41. Gileadi O, Burgess-Brown NA, Colebrook SM, Berridge G, Savitsky P, Smee CE, Loppnau P, Johansson C, Salah E, Pantic NH (2008) High throughput production of recombinant human proteins for crystallography. Methods Mol Biol 426:221–246. https://doi.org/10.1007/978-1-60327-058-8_14

    CAS  CrossRef  PubMed  Google Scholar 

  42. Saez NJ, Vincentelli R (2014) High-throughput expression screening and purification of recombinant proteins in E. coli. Methods Mol Biol 1091:33–53. https://doi.org/10.1007/978-1-62703-691-7_3

    CAS  CrossRef  PubMed  Google Scholar 

  43. Savitsky P, Bray J, Cooper CD, Marsden BD, Mahajan P, Burgess-Brown NA, Gileadi O (2010) High-throughput production of human proteins for crystallization: the SGC experience. J Struct Biol 172(1):3–13. https://doi.org/10.1016/j.jsb.2010.06.008

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Structural Genomics C, China Structural Genomics C, Northeast Structural Genomics C, Graslund S, Nordlund P, Weigelt J, Hallberg BM, Bray J, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, dhe-Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang D, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schutz A, Heinemann U, Yokoyama S, Bussow K, Gunsalus KC (2008) Protein production and purification. Nat Methods 5(2):135–146. https://doi.org/10.1038/nmeth.f.202

    CrossRef  Google Scholar 

  45. Vincentelli R, Cimino A, Geerlof A, Kubo A, Satou Y, Cambillau C (2011) High-throughput protein expression screening and purification in Escherichia coli. Methods 55(1):65–72. https://doi.org/10.1016/j.ymeth.2011.08.010

    CAS  CrossRef  PubMed  Google Scholar 

  46. Lutz S (2010) Beyond directed evolution – semi-rational protein engineering and design. Curr Opin Biotechnol 21(6):734–743. https://doi.org/10.1016/j.copbio.2010.08.011

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Yang JS, Seo SW, Jang S, Jung GY, Kim S (2012) Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput Biol 8(7):e1002612. https://doi.org/10.1371/journal.pcbi.1002612

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Steiner K, Schwab H (2012) Recent advances in rational approaches for enzyme engineering. Comput Struct Biotechnol J 2:e201209010. https://doi.org/10.5936/csbj.201209010

    CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Jemli S, Ayadi-Zouari D, Hlima HB, Bejar S (2016) Biocatalysts: application and engineering for industrial purposes. Crit Rev Biotechnol 36(2):246–258. https://doi.org/10.3109/07388551.2014.950550

    CAS  CrossRef  PubMed  Google Scholar 

  50. Lehmann M, Wyss M (2001) Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol 12(4):371–375

    CAS  CrossRef  Google Scholar 

  51. Ewert S, Honegger A, Pluckthun A (2004) Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 34(2):184–199. https://doi.org/10.1016/j.ymeth.2004.04.007

    CAS  CrossRef  PubMed  Google Scholar 

  52. Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103(15):5869–5874. https://doi.org/10.1073/pnas.0510098103

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Hart DJ, Waldo GS (2013) Library methods for structural biology of challenging proteins and their complexes. Curr Opin Struct Biol 23(3):403–408. https://doi.org/10.1016/j.sbi.2013.03.004

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  54. Yumerefendi H, Desravines DC, Hart DJ (2011) Library-based methods for identification of soluble expression constructs. Methods 55(1):38–43. https://doi.org/10.1016/j.ymeth.2011.06.007

    CAS  CrossRef  PubMed  Google Scholar 

  55. Yumerefendi H, Tarendeau F, Mas PJ, Hart DJ (2010) ESPRIT: an automated, library-based method for mapping and soluble expression of protein domains from challenging targets. J Struct Biol 172(1):66–74. https://doi.org/10.1016/j.jsb.2010.02.021

    CAS  CrossRef  PubMed  Google Scholar 

  56. Coco WM, Levinson WE, Crist MJ, Hektor HJ, Darzins A, Pienkos PT, Squires CH, Monticello DJ (2001) DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat Biotechnol 19(4):354–359. https://doi.org/10.1038/86744

    CAS  CrossRef  PubMed  Google Scholar 

  57. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16(7):379–394. https://doi.org/10.1038/nrg3927

    CAS  CrossRef  PubMed  Google Scholar 

  58. Arnold FH (2009) How proteins adapt: lessons from directed evolution. Cold Spring Harb Symp Quant Biol 74:41–46. https://doi.org/10.1101/sqb.2009.74.046

    CAS  CrossRef  PubMed  Google Scholar 

  59. Farinas ET, Bulter T, Arnold FH (2001) Directed enzyme evolution. Curr Opin Biotechnol 12(6):545–551

    CAS  CrossRef  Google Scholar 

  60. Tracewell CA, Arnold FH (2009) Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol 13(1):3–9. https://doi.org/10.1016/j.cbpa.2009.01.017

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10(12):866–876. https://doi.org/10.1038/nrm2805

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357(2):289–298. https://doi.org/10.1016/j.ab.2006.07.027

    CAS  CrossRef  PubMed  Google Scholar 

  63. Vedadi M, Arrowsmith CH, Allali-Hassani A, Senisterra G, Wasney GA (2010) Biophysical characterization of recombinant proteins: a key to higher structural genomics success. J Struct Biol 172(1):107–119. https://doi.org/10.1016/j.jsb.2010.05.005

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Deller MC, Kong L, Rupp B (2016) Protein stability: a crystallographer’s perspective. Acta Crystallogr F Struct Biol Commun 72(Pt 2):72–95. https://doi.org/10.1107/S2053230X15024619

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  65. Hew K, Dahlroth SL, Veerappan S, Pan LX, Cornvik T, Nordlund P (2015) Structure of the Varicella Zoster virus thymidylate synthase establishes functional and structural similarities as the human enzyme and potentiates itself as a target of brivudine. PLoS One 10(12):e0143947. https://doi.org/10.1371/journal.pone.0143947

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  66. Hew K, Dahlroth SL, Venkatachalam R, Nasertorabi F, Lim BT, Cornvik T, Nordlund P (2013) The crystal structure of the DNA-binding domain of vIRF-1 from the oncogenic KSHV reveals a conserved fold for DNA binding and reinforces its role as a transcription factor. Nucleic Acids Res 41(7):4295–4306. https://doi.org/10.1093/nar/gkt082

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Larsson EA, Jansson A, Ng FM, Then SW, Panicker R, Liu B, Sangthongpitag K, Pendharkar V, Tai SJ, Hill J, Dan C, Ho SY, Cheong WW, Poulsen A, Blanchard S, Lin GR, Alam J, Keller TH, Nordlund P (2013) Fragment-based ligand design of novel potent inhibitors of tankyrases. J Med Chem 56(11):4497–4508. https://doi.org/10.1021/jm400211f

    CAS  CrossRef  PubMed  Google Scholar 

  68. Almqvist H, Axelsson H, Jafari R, Dan C, Mateus A, Haraldsson M, Larsson A, Martinez Molina D, Artursson P, Lundback T, Nordlund P (2016) CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. Nat Commun 7:11040. https://doi.org/10.1038/ncomms11040

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  69. Guettou F, Quistgaard EM, Raba M, Moberg P, Low C, Nordlund P (2014) Selectivity mechanism of a bacterial homolog of the human drug-peptide transporters PepT1 and PepT2. Nat Struct Mol Biol 21(8):728–731. https://doi.org/10.1038/nsmb.2860

    CAS  CrossRef  PubMed  Google Scholar 

  70. Ratanji KD, Derrick JP, Dearman RJ, Kimber I (2014) Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol 11(2):99–109. https://doi.org/10.3109/1547691X.2013.821564

    CAS  CrossRef  PubMed  Google Scholar 

  71. Cornvik T, Dahlroth SL, Magnusdottir A, Herman MD, Knaust R, Ekberg M, Nordlund P (2005) Colony filtration blot: a new screening method for soluble protein expression in Escherichia coli. Nat Methods 2(7):507–509. https://doi.org/10.1038/nmeth767

    CAS  CrossRef  PubMed  Google Scholar 

  72. Dahlroth SL, Nordlund P, Cornvik T (2006) Colony filtration blotting for screening soluble expression in Escherichia coli. Nat Protoc 1(1):253–258. https://doi.org/10.1038/nprot.2006.39

    CAS  CrossRef  PubMed  Google Scholar 

  73. Cornvik T, Dahlroth SL, Magnusdottir A, Flodin S, Engvall B, Lieu V, Ekberg M, Nordlund P (2006) An efficient and generic strategy for producing soluble human proteins and domains in E. coli by screening construct libraries. Proteins 65(2):266–273. https://doi.org/10.1002/prot.21090

    CAS  CrossRef  PubMed  Google Scholar 

  74. Dahlroth SL, Lieu V, Haas J, Nordlund P (2009) Screening colonies of pooled ORFeomes (SCOOP): a rapid and efficient strategy for expression screening ORFeomes in Escherichia coli. Protein Expr Purif 68(2):121–127. https://doi.org/10.1016/j.pep.2009.07.010

    CAS  CrossRef  PubMed  Google Scholar 

  75. Martinez Molina D, Cornvik T, Eshaghi S, Haeggstrom JZ, Nordlund P, Sabet MI (2008) Engineering membrane protein overproduction in Escherichia coli. Protein Sci 17(4):673–680. https://doi.org/10.1110/ps.073242508

    CAS  CrossRef  PubMed  Google Scholar 

  76. Cabantous S, Pedelacq JD, Mark BL, Naranjo C, Terwilliger TC, Waldo GS (2005) Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis. J Struct Funct Genom 6(2–3):113–119. https://doi.org/10.1007/s10969-005-5247-5

    CAS  CrossRef  Google Scholar 

  77. Waldo GS, Standish BM, Berendzen J, Terwilliger TC (1999) Rapid protein-folding assay using green fluorescent protein. Nat Biotechnol 17(7):691–695. https://doi.org/10.1038/10904

    CAS  CrossRef  PubMed  Google Scholar 

  78. Maxwell KL, Mittermaier AK, Forman-Kay JD, Davidson AR (1999) A simple in vivo assay for increased protein solubility. Protein Sci 8(9):1908–1911. https://doi.org/10.1110/ps.8.9.1908

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  79. Fisher AC, Kim W, DeLisa MP (2006) Genetic selection for protein solubility enabled by the folding quality control feature of the twin-arginine translocation pathway. Protein Sci 15(3):449–458. https://doi.org/10.1110/ps.051902606

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  80. Lockard MA, Listwan P, Pedelacq JD, Cabantous S, Nguyen HB, Terwilliger TC, Waldo GS (2011) A high-throughput immobilized bead screen for stable proteins and multi-protein complexes. Protein Eng Des Sel 24(7):565–578. https://doi.org/10.1093/protein/gzr021

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  81. Peabody DS, Al-Bitar L (2001) Isolation of viral coat protein mutants with altered assembly and aggregation properties. Nucleic Acids Res 29(22):E113

    CAS  CrossRef  Google Scholar 

  82. Wigley WC, Stidham RD, Smith NM, Hunt JF, Thomas PJ (2001) Protein solubility and folding monitored in vivo by structural complementation of a genetic marker protein. Nat Biotechnol 19(2):131–136. https://doi.org/10.1038/84389

    CAS  CrossRef  PubMed  Google Scholar 

  83. Chautard H, Blas-Galindo E, Menguy T, Grand’Moursel L, Cava F, Berenguer J, Delcourt M (2007) An activity-independent selection system of thermostable protein variants. Nat Methods 4(11):919–921. https://doi.org/10.1038/nmeth1090

    CAS  CrossRef  PubMed  Google Scholar 

  84. Foit L, Morgan GJ, Kern MJ, Steimer LR, von Hacht AA, Titchmarsh J, Warriner SL, Radford SE, Bardwell JC (2009) Optimizing protein stability in vivo. Mol Cell 36(5):861–871. https://doi.org/10.1016/j.molcel.2009.11.022

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  85. Martin A, Schmid FX, Sieber V (2003) Proside: a phage-based method for selecting thermostable proteins. Methods Mol Biol 230:57–70. https://doi.org/10.1385/1-59259-396-8:57

    CAS  CrossRef  PubMed  Google Scholar 

  86. Sieber V, Pluckthun A, Schmid FX (1998) Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16(10):955–960. https://doi.org/10.1038/nbt1098-955

    CAS  CrossRef  PubMed  Google Scholar 

  87. Asial I, Cheng YX, Engman H, Dollhopf M, Wu B, Nordlund P, Cornvik T (2013) Engineering protein thermostability using a generic activity-independent biophysical screen inside the cell. Nat Commun 4:2901. https://doi.org/10.1038/ncomms3901

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Competing Financial Interests

S.D. and P.N. are co-founders of Evitra AB that owns the commercial rights to this method. I.A. and P.N. are co-founders of DotBio Pte. Ltd., which has licensed this method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Asial .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Asial, I., Nordlund, P., Dahlroth, SL. (2019). Hot CoFi Blot: A High-Throughput Colony-Based Screen for Identifying More Thermally Stable Protein Variants. In: Vincentelli, R. (eds) High-Throughput Protein Production and Purification. Methods in Molecular Biology, vol 2025. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9624-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9624-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9623-0

  • Online ISBN: 978-1-4939-9624-7

  • eBook Packages: Springer Protocols