Skip to main content

Replica-Exchange Methods for Biomolecular Simulations

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2022))

Abstract

In this study, a replica-exchange method was developed to overcome conformational sampling difficulties in computer simulations of spin glass or other systems with rugged free-energy landscapes. This method was then applied to the protein-folding problem in combination with molecular dynamics (MD) simulation. Owing to its simplicity and sampling efficiency, the replica-exchange method has been applied to many other biological problems and has been continuously improved. The method has often been combined with other sampling techniques, such as umbrella sampling, free-energy perturbation, metadynamics, and Gaussian accelerated MD (GaMD). In this chapter, we first summarize the original replica-exchange molecular dynamics (REMD) method and discuss how new algorithms related to the original method are implemented to add new features. Heterogeneous and flexible structures of an N-glycan in a solution are simulated as an example of applications by REMD, replica exchange with solute tempering, and GaMD. The sampling efficiency of these methods on the N-glycan system and the convergence of the free-energy changes are compared. REMD simulation protocols and trajectory analysis using the GENESIS software are provided to facilitate the practical use of advanced simulation methods.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Karplus M, McCammon JA (1983) Dynamics of proteins: elements and function. Annu Rev Biochem 52:263–300

    Article  CAS  Google Scholar 

  2. Abrams C, Bussi G (2014) Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16:163–199

    Article  Google Scholar 

  3. Bernardi RC, Melo MCR, Schulten K (2015) Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Acta 1850:872–877

    Article  CAS  Google Scholar 

  4. Miao Y, McCammon JA (2016) Unconstrained enhanced sampling for free energy calculations of biomolecules: a review. Mol Simul 42:1046–1055

    Article  CAS  Google Scholar 

  5. Mori T, Miyashita N, Im W, Feig M, Sugita Y (2016) Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochim Biophys Acta 1858:1635–1651

    Article  CAS  Google Scholar 

  6. Hukushima K, Nemoto K (1996) Exchange Monte Carlo method and application to spin glass simulations. J Phys Soc Jpn 65:1604–1608

    Article  CAS  Google Scholar 

  7. Swendsen RH, Wang JS (1986) Replica Monte Carlo simulation of spin glasses. Phys Rev Lett 57:2607–2609

    Article  CAS  Google Scholar 

  8. Okamoto Y (2004) Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics simulations. J Mol Graph Model 22:425–439

    Article  CAS  Google Scholar 

  9. Lee J, Scheraga HA, Rackovsky S (1997) New optimization method for conformational energy calculations on polypeptides: conformational space annealing. J Comput Chem 18:1222–1232

    Article  CAS  Google Scholar 

  10. Okamoto Y, Fukugita M, Nakazawa T, Kawai H (1991) Alpha-helix folding by Monte Carlo simulated annealing in isolated C-peptide of ribonuclease A. Protein Eng 4:639–647

    Article  CAS  Google Scholar 

  11. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  12. Sugita Y, Okamoto Y (2005) Molecular mechanism for stabilizing a short helical peptide studied by generalized-ensemble simulations with explicit solvent. Biophys J 88:3180–3190

    Article  CAS  Google Scholar 

  13. Im W, Feig M, Brooks CL III (2003) An implicit membrane generalized born theory for the study of structure, stability, and interactions of membrane proteins. Biophys J 85:2900–2918

    Article  CAS  Google Scholar 

  14. Sugita Y, Kitao A, Okamoto Y (2000) Multidimensional replica-exchange method for free-energy calculations. J Chem Phys 113:6042–6051

    Article  CAS  Google Scholar 

  15. Fukunishi H, Watanabe O, Takada S (2002) On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: application to protein structure prediction. J Chem Phys 116:9058–9067

    Article  CAS  Google Scholar 

  16. Moradi M, Tajkhorshid E (2013) Mechanistic picture for conformational transition of a membrane transporter at atomic resolution. Proc Natl Acad Sci U S A 110:18916–18921

    Article  CAS  Google Scholar 

  17. Park S, Im W (2013) Two dimensional window exchange umbrella sampling for transmembrane helix assembly. J Chem Theory Comput 9:13–17

    Article  CAS  Google Scholar 

  18. Park S, Kim T, Im W (2012) Transmembrane helix assembly by window exchange umbrella sampling. Phys Rev Lett 108:108102

    Article  Google Scholar 

  19. Kamiya M, Sugita Y (2018) Flexible selection of the solute region in replica exchange with solute tempering: application to protein-folding simulations. J Chem Phys 149(7):072304

    Article  Google Scholar 

  20. Liu P, Kim B, Friesner RA, Berne BJ (2005) Replica exchange with solute tempering: a method for sampling biological systems in explicit water. Proc Natl Acad Sci U S A 102:13749–13754

    Article  CAS  Google Scholar 

  21. Terakawa T, Kameda T, Takada S (2011) On easy implementation of a variant of the replica exchange with solute tempering in GROMACS. J Comput Chem 32:1228–1234

    Article  CAS  Google Scholar 

  22. Wang L, Friesner RA, Berne BJ (2011) Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J Phys Chem B 115:9431–9438

    Article  CAS  Google Scholar 

  23. Kokubo H, Tanaka T, Okamoto Y (2013) Two-dimensional replica-exchange method for predicting protein-ligand binding structures. J Comput Chem 34:2601–2614

    Article  CAS  Google Scholar 

  24. Jiang W, Roux B (2010) Free energy perturbation Hamiltonian replica-exchange molecular dynamics (FEP/H-REMD) for absolute ligand binding free energy calculations. J Chem Theory Comput 6:2559–2565

    Article  CAS  Google Scholar 

  25. Wang L, Berne BJ, Friesner RA (2012) On achieving high accuracy and reliability in the calculation of relative protein-ligand binding affinities. Proc Natl Acad Sci U S A 109:1937–1942

    Article  CAS  Google Scholar 

  26. Wang L, Deng Y, Knight JL, Wu Y, Kim B, Sherman W et al (2013) Modeling local structural rearrangements using FEP/REST: application to relative binding affinity predictions of CDK2 inhibitors. J Chem Theory Comput 9:1282–1293

    Article  CAS  Google Scholar 

  27. Huang YM, McCammon JA, Miao Y (2018) Replica exchange Gaussian accelerated molecular dynamics: improved enhanced sampling and free energy calculation. J Chem Theory Comput 14:1853–1864

    Article  CAS  Google Scholar 

  28. Bussi G, Gervasio FL, Laio A, Parrinello M (2006) Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. J Am Chem Soc 128:13435–13441

    Article  CAS  Google Scholar 

  29. Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111:4553–4559

    Article  CAS  Google Scholar 

  30. Galvelis R, Re S, Sugita Y (2017) Enhanced conformational sampling of N-glycans in solution with replica state exchange metadynamics. J Chem Theory Comput 13:1934–1942

    Article  CAS  Google Scholar 

  31. Galvelis R, Sugita Y (2015) Replica state exchange metadynamics for improving the convergence of free energy estimates. J Comput Chem 36:1446–1455

    Article  CAS  Google Scholar 

  32. Nishima W, Miyashita N, Yamaguchi Y, Sugita Y, Re S (2012) Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution. J Phys Chem B 116:8504–8512

    Article  CAS  Google Scholar 

  33. Re S, Miyashita N, Yamaguchi Y, Sugita Y (2011) Structural diversity and changes in conformational equilibria of biantennary complex-type N-glycans in water revealed by replica-exchange molecular dynamics simulation. Biophys J 101:L44–L46

    Article  CAS  Google Scholar 

  34. Jung J, Mori T, Kobayashi C, Matsunaga Y, Yoda T, Feig M et al (2015) GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations. Wiley Interdiscip Rev Comput Mol Sci 5:310–323

    Article  CAS  Google Scholar 

  35. Kobayashi C, Jung J, Matsunaga Y, Mori T, Ando T, Tamura K et al (2017) GENESIS 1.1: a hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms. J Comput Chem 38:2193–2206

    Article  CAS  Google Scholar 

  36. Yu I, Mori T, Ando T, Harada R, Jung J, Sugita Y et al (2016) Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. elife 5:e19274

    Article  Google Scholar 

  37. Mori T, Jung J, Sugita Y (2013) Surface-tension replica-exchange molecular dynamics method for enhanced sampling of biological membrane systems. J Chem Theory Comput 9:5629–5640

    Article  CAS  Google Scholar 

  38. Mori Y, Okamoto Y (2010) Generalized-ensemble algorithms for the isobaric-isothermal ensemble. J Phys Soc Jpn 79:074003

    Article  Google Scholar 

  39. Mori Y, Okamoto Y (2010) Replica-exchange molecular dynamics simulations for various constant temperature algorithms. J Phys Soc Jpn 79:074001

    Article  Google Scholar 

  40. Chodera JD, Shirts MR (2011) Replica exchange and expanded ensemble simulations as Gibbs sampling: simple improvements for enhanced mixing. J Chem Phys 135:194110

    Article  Google Scholar 

  41. Plattner N, Doll JD, Dupuis P, Wang H, Liu Y, Gubernatis JE (2011) An infinite swapping approach to the rare-event sampling problem. J Chem Phys 135:134111

    Article  Google Scholar 

  42. Suwa H, Todo S (2010) Markov chain Monte Carlo method without detailed balance. Phys Rev Lett 105:120603

    Article  Google Scholar 

  43. Itoh SG, Okumura H (2013) Replica-permutation method with the Suwa-Todo algorithm beyond the replica-exchange method. J Chem Theory Comput 9:570–581

    Article  CAS  Google Scholar 

  44. Paschek D, Garcia AE (2004) Reversible temperature and pressure denaturation of a protein fragment: a replica exchange molecular dynamics simulation study. Phys Rev Lett 93:238105

    Article  Google Scholar 

  45. Sugita Y, Okamoto Y (2000) Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape. Chem Phys Lett 329:261–270

    Article  CAS  Google Scholar 

  46. Berg BA, Neuhaus T (1992) Multicanonical ensemble: a new approach to simulate first-order phase transitions. Phys Rev Lett 68:9–12

    Article  CAS  Google Scholar 

  47. Hansmann UHE, Okamoto Y (1993) Prediction of peptide conformation by multicanonical algorithm - new approach to the multiple-minima problem. J Comput Chem 14:1333–1338

    Article  CAS  Google Scholar 

  48. Yoda T, Sugita Y, Okamoto Y (2007) Cooperative folding mechanism of a beta-hairpin peptide studied by a multicanonical replica-exchange molecular dynamics simulation. Proteins 66:846–859

    Article  CAS  Google Scholar 

  49. Yoda T, Sugita Y, Okamoto Y (2010) Hydrophobic core formation and dehydration in protein folding studied by generalized-ensemble simulations. Biophys J 99:1637–1644

    Article  CAS  Google Scholar 

  50. Mitsutake A, Okamoto Y (2000) Replica-exchange simulated tempering method for simulations of frustrated systems. Chem Phys Lett 332:131–138

    Article  CAS  Google Scholar 

  51. Kim J, Keyes T, Straub JE (2010) Generalized replica exchange method. J Chem Phys 132:224107

    Article  Google Scholar 

  52. Barducci A, Bussi G, Parrinello M (2008) Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys Rev Lett 100:020603

    Article  Google Scholar 

  53. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99:12562–12566

    Article  CAS  Google Scholar 

  54. Camilloni C, Provasi D, Tiana G, Broglia RA (2008) Exploring the protein G helix free-energy surface by solute tempering metadynamics. Proteins 71:1647–1654

    Article  CAS  Google Scholar 

  55. Jung J, Naurse A, Kobayashi C, Sugita Y (2016) Graphics processing unit acceleration and parallelization of GENESIS for large-scale molecular dynamics simulations. J Chem Theory Comput 12:4947–4958

    Article  CAS  Google Scholar 

  56. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  57. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28

    Google Scholar 

  58. Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95

    Article  Google Scholar 

  59. Re S, Nishima W, Miyashita N, Sugita Y (2012) Conformational flexibility of N-glycans in solution studied by REMD simulations. Biophys Rev 4:179–187

    Article  CAS  Google Scholar 

  60. Matsunaga Y, Komuro Y, Kobayashi C, Jung J, Mori T, Sugita Y (2016) Dimensionality of collective variables for describing conformational changes of a multi-domain protein. J Phys Chem Lett 7:1446–1451

    Article  CAS  Google Scholar 

  61. Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G (2006) String method in collective variables: minimum free energy paths and isocommittor surfaces. J Chem Phys 125:24106

    Article  Google Scholar 

  62. Woods G (2005–2018) GLYCAM Web. Complex Carbohydrate Research Center, University of Georgia, Athens, GA

    Google Scholar 

  63. Jo S, Song KC, Desaire H, MacKerell AD Jr, Im W (2011) Glycan Reader: automated sugar identification and simulation preparation for carbohydrates and glycoproteins. J Comput Chem 32:3135–3141

    Article  CAS  Google Scholar 

  64. Park SJ, Lee J, Patel DS, Ma H, Lee HS, Jo S et al (2017) Glycan Reader is improved to recognize most sugar types and chemical modifications in the Protein Data Bank. Bioinformatics 33:3051–3057

    Article  CAS  Google Scholar 

  65. Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW et al (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564

    Article  CAS  Google Scholar 

  66. Guvench O, Hatcher ER, Venable RM, Pastor RW, Mackerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370

    Article  CAS  Google Scholar 

  67. Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ et al (2011) CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput 7:3162–3180

    Article  CAS  Google Scholar 

  68. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  69. Patriksson A, van der Spoel D (2008) A temperature predictor for parallel tempering simulations. Phys Chem Chem Phys 10:2073–2077

    Article  CAS  Google Scholar 

  70. Miao Y, Feher VA, McCammon JA (2015) Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11:3584–3595

    Article  CAS  Google Scholar 

  71. Miao Y, Sinko W, Pierce L, Bucher D, Walker RC, McCammon JA (2014) Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. J Chem Theory Comput 10:2677–2689

    Article  CAS  Google Scholar 

  72. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. 1. The method. J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  73. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1995) Multidimensional free-energy calculations using the weighted histogram analysis method. J Comput Chem 16:1339–1350

    Article  CAS  Google Scholar 

  74. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:124105

    Article  Google Scholar 

Download references

Acknowledgements

Y.S. thanks especially Yuko Okamoto for the collaboration and guidance to develop T-REMD, MREM, REUS, and MUCAREM at the Institute for Molecular Science. We are grateful to the young scientists who have worked with us in RIKEN for the development of replica-exchange methods and the applications (Naoyuki Miyashita, Takaharu Mori, Raimondas Galvelis, Daisuke Matsuoka, Ai Niitsu, George Pantelopulos). Computer resources were provided by HOKUSAI GreatWave in RIKEN Advanced Center for Computing and Communication and K computer in RIKEN Center for Computational Science through the HPCI System Research project (Project IDs ra000009, hp140169, hp150108, hp150270, hp160207, hp170254, and hp170115). This research has been funded by strategic programs for innovation research: “Computational life science and application in drug discovery and medical development,” “Novel measurement techniques for visualizing live protein molecules at work” (Grant No. 26119006), JST CREST on “Structural Life Science and Advanced Core Technologies for Innovative Life Science Research” (Grant No. JPMJCR13M3), RIKEN pioneering research projects on “Dynamics Structural Biology” and “Integrated Lipidology” (to Y.S.), and MEXT/JSPS KAKENHI Grant Numbers 25330358 and 16K00415 (to S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Sugita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sugita, Y., Kamiya, M., Oshima, H., Re, S. (2019). Replica-Exchange Methods for Biomolecular Simulations. In: Bonomi, M., Camilloni, C. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9608-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9608-7_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9607-0

  • Online ISBN: 978-1-4939-9608-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics