Skip to main content

Atomistic Force Fields for Proteins

  • Protocol
  • First Online:
Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2022))

Abstract

All-atom, classical force fields for protein molecular dynamics (MD) simulations currently occupy a sweet spot in the universe of computational models, sufficiently detailed to be of predictive value in many cases, yet also simple enough that some biologically relevant time scales (microseconds or more) can now be sampled via specialized hardware or enhanced sampling methods. However, due to their long evolutionary history, there is now a myriad of force field branches in current use, which can make it hard for those entering the simulation field to know which would be the best set of parameters for a given application. In this chapter, I try to give an overview of the historical motivation for the different force fields available, suggestions for how to determine the most appropriate model and what to do if the results are in conflict with experimental evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652

    Article  CAS  Google Scholar 

  2. Moore GE (1965) Cramming more components into integrated circuits. Electronics 38(8):114–117

    Google Scholar 

  3. Friedrichs MS, Eastman P, Vaiyanathan V, Houston M, Legrand S, Beberg AL, Ensign DL, Bruns CM, Pande VS (2009) Accelerating molecular dynamics simulations on graphics processing units. J Comput Chem 30(6):864–872

    Article  CAS  Google Scholar 

  4. Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC, Eastwood MP, Gagliardo J, Grossman JP, Ho CR, Ierardi DJ, Kolossvary I, Klepeis JL, Layman T, McLeavey C, Moraes MA, Mueller R, Priest EC, Shan YB, Spengler J, Theobald M, Towles B, Wang SC (2007) Anton, a special-purpose machine for molecular dynamics simulation. In: Isca’07: 34th Annual International Symposium on Computer Architecture, Conference Proceedings. Conference Proceedings - Annual International Symposium on Computer Architecture. Assoc Computing Machinery, New York, NY, pp 1–12

    Google Scholar 

  5. Zuckerman DM (2011) Equilibrium sampling in biomolecular simulations. Annu Rev Biophys 40:41–62

    Article  CAS  Google Scholar 

  6. Valsson O, Tiwary P, Parrinello M (2016) Enhancing important fluctuations: rare events and metadynamics from a conceptual viewpoint. Annu Rev Phys Chem 67:159–184

    Article  CAS  Google Scholar 

  7. Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) How fast-folding proteins fold. Science 334:517–520

    Article  CAS  Google Scholar 

  8. Noskov SY, Berneche S, Roux B (2004) Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431:830–834

    Article  CAS  Google Scholar 

  9. Lifson S (1968) Consistent force field for calculations of conformations, vibrational spectra and enthalpies of cycloalkane and n-alkane molecules. J Chem Phys 49(11):5116

    Article  CAS  Google Scholar 

  10. Gelin BR, Karplus M (1975) Sidechain torsional potentials and motion of amino acids in proteins: bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci U S A 72:2002

    Article  CAS  Google Scholar 

  11. Tirado-Rives J, Jorgensen WL (1988) The OPLS [Optimized Potentials for Liquid Simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110(6):1657–1666

    Article  Google Scholar 

  12. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  13. MacKerell AD Jr, Bashford D, Bellot M, Dunbrack JRL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, III RB, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Kuczera J, Yin D, Karplus M (2000) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  Google Scholar 

  14. MacKerell AD Jr, Feig M, Brooks CL (2004) Improved treatment of the protein backbone in empirical force fields. J Am Chem Soc 126:698–699

    Article  CAS  Google Scholar 

  15. MacKerell AD Jr, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  CAS  Google Scholar 

  16. Best RB, Zhu X, Shim J, Lopes P, Mittal J, Feig M, MacKerell AD Jr (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theor Comput 8:3257–3273

    Article  CAS  Google Scholar 

  17. Huang J, Rauscher S, Nawrocki G, Rang T, Feig M, De Groot BL, Grubmüller H, Mackerell AD (2016) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    Article  Google Scholar 

  18. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115:9620–9631

    Article  CAS  Google Scholar 

  19. Cerutti DS, Swope WC, Rice JE, Case DA (2014) ff14ipq: a self-consistent force field for condensed-phase simulations of proteins. J Chem Theor Comput 10:4515–4534

    Article  CAS  Google Scholar 

  20. Kollman PA (1996) Advances and continuing challenges in achieving realistic and predictive simulations of the properties of organic and biological molecules. Acc Chem Res 29(10):461–469

    Article  CAS  Google Scholar 

  21. Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21(12):1049–1074

    Article  CAS  Google Scholar 

  22. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple AMBER force-fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  CAS  Google Scholar 

  23. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theor Comput 11:3696–3713

    Article  CAS  Google Scholar 

  24. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25:1656

    Article  CAS  Google Scholar 

  25. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, Van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40:843–856

    Article  CAS  Google Scholar 

  26. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  27. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparameterization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487

    Article  CAS  Google Scholar 

  28. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2015) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theor Comput 12:281–296

    Article  Google Scholar 

  29. Riniker S (2018) Fixed-charge atomistic force fields for molecular dynamics simulations in the condensed phase: an overview. J Chem Inf Model 58:565–578

    Article  CAS  Google Scholar 

  30. Jorgensen WL, Chandrasekhar J, Madura JD (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  31. Hermans J, Berendsen HJC, Van Gunsteren WF, Postma JPM (1984) A consistent empirical potential for water-protein interactions. Biopolymers 23:1513–1518

    Article  CAS  Google Scholar 

  32. Boonstra S, Onck PR, Van der Giessen E (2016) CHARMM TIP3P water model suppresses peptide folding by solvating the unfolded state. J Phys Chem B 120:3692–3698

    Article  CAS  Google Scholar 

  33. Vega C, Abascal JLF, Conde MM, Aragones JL (2008) What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss 141:251–276

    Article  Google Scholar 

  34. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123:234505

    Article  CAS  Google Scholar 

  35. Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665

    Article  CAS  Google Scholar 

  36. Wang L-P, Martinez TJ, Pande VS (2014) Building force fields: an automatic, systematic and reproducible approach. J Chem Theor Comput 5:1885–1891

    CAS  Google Scholar 

  37. Izadi S, Anandakrishnan R, Onufriev AV (2014) Building water models: a different approach. J Phys Chem Lett 5:3863–3871

    Article  CAS  Google Scholar 

  38. Nerenberg PS, Head-Gordon T (2011) Optimizing protein-solvent force fields to reproduce intrinsic conformational preferences of model peptides. J Chem Theory Comp 7:1220–1230

    Article  CAS  Google Scholar 

  39. Best RB, Mittal J (2010) Protein simulations with an optimized water model: cooperative helix formation and temperature-induced unfolded state collapse. J Phys Chem B 114:14916–14923

    Article  CAS  Google Scholar 

  40. Luo Y, Roux B (2009) Simulations of osmotic pressure in concentrated aqueous salt solutions. J Phys Chem Lett 1:183–189

    Article  Google Scholar 

  41. Joung IS, Cheatham TE (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041

    Article  CAS  Google Scholar 

  42. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78:1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) Systematic validation of protein force fields against experimental data. PLoS One 7(2):e32131

    Article  CAS  Google Scholar 

  44. Snow CD, Nguyen H, Pande VS, Gruebele M (2002) Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420:102–106

    Article  CAS  Google Scholar 

  45. Snow CD, Zagrovic B, Pande VS (2002) The trp cage: folding kinetics and unfolded state topology via molecular dynamics simulations. J Am Chem Soc 124:14548

    Article  CAS  Google Scholar 

  46. Zagrovic B, Snow CD, Shirts MR, Pande VS (2002) Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing. J Mol Biol 323:927

    Article  CAS  Google Scholar 

  47. Freddolino PL, Park S, Roux B, Schulten K (2009) Force field bias in protein folding simulations. Biophys J 96:3772–3780

    Article  CAS  Google Scholar 

  48. Freddolino PL, Harrison CB, Liu Y, Schulten K (2010) Challenges in protein folding simulations. Nat Phys 6:751–758

    Article  CAS  Google Scholar 

  49. Shalongo W, Dugad L, Stellwagen E (1994) Distribution of helicity within the model peptide Acetyl(AAQAA)3amide. J Am Chem Soc 116:8288–8293

    Article  CAS  Google Scholar 

  50. Best RB, Hummer G (2009) Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J Phys Chem B 113:9004–9015

    Article  CAS  Google Scholar 

  51. Mittal J, Best RB (2010) Tackling force-field bias in protein folding simulations: folding of villin HP35 and pin WW domains in explicit water. Biophys J 99:L26–L28

    Article  CAS  Google Scholar 

  52. Best RB, Mittal J (2010) Balance between α and β structures in ab initio protein folding. J Phys Chem B 114:8790–8798

    Article  CAS  Google Scholar 

  53. Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization. Biophys J 100:L47–L49

    Article  CAS  Google Scholar 

  54. Jiang F, Zhou C-Y, Wu Y-D (2014) Residue-specific force field based on the protein coil library. RSFF1: modification of OPLS-AA/L. J Phys Chem B 118:6983–6998

    Article  CAS  Google Scholar 

  55. Zhou C-Y, Jiang F, Wu Y-D (2015) Residue-specific force field based on protein coil library. RSFF2: modification of AMBER ff99SB. J Phys Chem B 119:1035–1047

    Article  CAS  Google Scholar 

  56. Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24:98–105

    Article  CAS  Google Scholar 

  57. Best RB, Hummer G (2016) Microscopic interpretation of folding phi-values using the transition-path ensemble. Proc Natl Acad Sci U S A 113(12):3263–3268

    Article  CAS  Google Scholar 

  58. Nettels D, Müller-Späth S, Küster F, Hofmann H, Haenni D, Rüegger S, Reymond L, Hoffmann A, Kubelka J, Heinz B, Gast K, Best RB, Schuler B (2009) Single molecule spectroscopy of the temperature-induced collapse of unfolded proteins. Proc Natl Acad Sci U S A 106:20740–20745

    Article  CAS  Google Scholar 

  59. Petrov D, Zagrovic B (2014) Are current atomistic forcefields accurate enough to study proteins in crowded environments? PLoS Comput Biol 10(5):e1003638

    Article  Google Scholar 

  60. Nerenberg PS, Jo B, Tripathy A, Head-Gordon T (2012) Optimizing solute-water van der Waals interactions to reproduce solvation free energies. J Phys Chem B 116:4524–4534

    Article  CAS  Google Scholar 

  61. Best RB, Zheng W, Mittal J (2014) Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association. J Chem Theor Comput 10:5113–5124

    Article  CAS  Google Scholar 

  62. Piana S, Donchev AG, Robustelli P, Shaw DE (2015) Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J Phys Chem B 119:5113–5123

    Article  CAS  Google Scholar 

  63. Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci U S A 115(21):E4758–E4766

    Article  CAS  Google Scholar 

  64. Ahmed MC, Papaleo E, Lindorff-Larsen K (2018) How well do force fields capture the strength of salt bridges in proteins? PeerJ 6:e4967

    Article  Google Scholar 

  65. Debiec KT, Cerutti DS, Baker LR, Gronenborn AM, Case DA, Chong LT (2016) Further along the road less travelled: AMBER ff15ipq, an original protein force field built on a self-consistent physical model. J Chem Theor Comput 12:3926–3947

    Article  CAS  Google Scholar 

  66. Debiec KT (2014) Evaluating the strength of salt bridges: a comparison of current biomolecular force fields. J Phys Chem B 118:6561–6569

    Article  CAS  Google Scholar 

  67. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, Mackerell AD, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843

    Article  CAS  Google Scholar 

  68. Domanski J, Sansom MSP, Stansfeld P, Best RB (2018) Balancing force field protein-lipid interactions to capture transmembrane helix-helix association. J Chem Theor Comput 14:1706–1715

    Article  CAS  Google Scholar 

  69. Jambeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116:3164–3179

    Article  Google Scholar 

  70. Jambeck JPM, Lyubartsev AP (2012) An extension and further validation of an all-atomistic force field for biological membranes. J Chem Theor Comput 8:2938–2948

    Article  Google Scholar 

  71. Horinek D, Netz RR (2011) Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations. J Phys Chem A 115:6125–6136

    Article  CAS  Google Scholar 

  72. Zheng W, Borgia A, Borgia MB, Schuler B, Best RB (2015) Empirical optimization of interactions between proteins and chemical denaturants in molecular simulations. J Chem Theor Comput 11:5543–5553

    Article  CAS  Google Scholar 

  73. Hummer G, Köfinger J (2015) Bayesian ensemble refinement by replica simulations and reweighting. J Chem Phys 143:243150

    Article  Google Scholar 

  74. Rangan R, Bonomi M, Heller GT, Cesari A, Bussi G, Vendruscolo M (2018) Determination of structural ensembles of proteins: restraining vs reweighting. J Chem Theor Comput 14:6632

    Article  CAS  Google Scholar 

  75. Di Pierro M, Elber R (2013) Automated optimization of potential parameters. J Chem Theor Comput 9:3311–3320

    Article  Google Scholar 

  76. Wennberg CL, Murtola T, Pall S, Abraham MJ, Hess B, Lindahl E (2015) Direct-space corrections enable fast and accurate Lorentz−Berthelot combination rule Lennard-Jones lattice summation. J Chem Theor Comput 11:5737–5746

    Article  CAS  Google Scholar 

  77. Flyvbjerg H, Petersen HG (1989) Error estimates on averages of correlated data. J Chem Phys 91:461–466

    Article  CAS  Google Scholar 

Download references

Acknowledgment

RB is supported by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Best .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Best, R.B. (2019). Atomistic Force Fields for Proteins. In: Bonomi, M., Camilloni, C. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 2022. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9608-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9608-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9607-0

  • Online ISBN: 978-1-4939-9608-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics