Skip to main content

Using Proteomics to Identify Inflammation During Urinary Tract Infection

  • Protocol
  • First Online:
Proteus mirabilis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2021))

Abstract

Urinary tract infections (UTIs) are one of the most common bacterial infections. Conventional approaches to diagnose these infections rely on microbial urine culture, urine sediment microscopy and basic molecular urinalysis tests, in combination with assessments of patient symptoms that are indicative of UTI. The last decade has seen a more widespread clinical use of standardized MALDI-TOF methods to identify UTI-causing microbial agents. Shotgun proteomics methods to determine the extent of inflammation and types of immune cell effectors in urine have not become part of routine clinical tests. However, such methods are useful to investigate UTI pathogenesis, identify difficult-to-culture pathogens and understand antimicrobial effector mechanisms. The present chapter describes these approaches in order to gain quantitative and qualitative insights into inflammation and immune responses in patients with UTI and simultaneously profile the causative agents. The methods are also applicable to examine catheter-associated UTIs and vaginal infections from urine samples. Protocols provided here pertain to direct analyses of clinical specimens including urine sediments and urethral catheter biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13(5):269–284. https://doi.org/10.1038/nrmicro3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jacobsen SM, Stickler DJ, Mobley HLT, Shirtliff ME (2008) Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 21(1):26–59. https://doi.org/10.1128/cmr.00019-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mohan B, Zaman K, Anand N, Taneja N (2017) Aerococcus viridans: a rare pathogen causing urinary tract infection. J Clin Diagn Res 11(1):DR01–DR03. https://doi.org/10.7860/JCDR/2017/23997.9229

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E (2010) The diagnosis of urinary tract infection: a systematic review. Dtsch Arztebl Int 107(21):361–367. https://doi.org/10.3238/arztebl.2010.0361

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rahi P, Prakash O, Shouche YS (2016) Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol 7:1359. https://doi.org/10.3389/fmicb.2016.01359

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carbonnelle E, Mesquita C, Bille E, Day N, Dauphin B, Beretti J-L, Ferroni A, Gutmann L, Nassif X (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44(1):104–109. https://doi.org/10.1016/j.clinbiochem.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  7. Yu Y, Sikorski P, Bowman-Gholston C, Cacciabeve N, Nelson K, Pieper R (2015) Diagnosing inflammation and infection in the urinary system via proteomics. J Transl Med 13(1):111. https://doi.org/10.1186/s12967-015-0475-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu Y, Zielinski MD, Rolfe MA, Kuntz MM, Nelson H, Nelson KE, Pieper R (2015) Similar neutrophil-driven inflammatory and antibacterial responses in elderly patients with symptomatic and asymptomatic bacteriuria. Infect Immun 83(10):4142–4153. https://doi.org/10.1128/iai.00745-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu Y, Sikorski P, Smith M, Bowman-Gholston C, Cacciabeve N, Nelson KE, Pieper R (2017) Comprehensive metaproteomic analyses of urine in the presence and absence of neutrophil-associated inflammation in the urinary tract. Theranostics 7(2):238–252. https://doi.org/10.7150/thno.16086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu Y, Kwon K, Tsitrin T, Bekele S, Sikorski P, Nelson KE, Pieper R (2017) Characterization of early-phase neutrophil extracellular traps in urinary tract infections. PLoS Pathog 13(1):e1006151. https://doi.org/10.1371/journal.ppat.1006151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu Y, Suh MJ, Sikorski P, Kwon K, Nelson KE, Pieper R (2014) Urine sample preparation in 96-well filter plates for quantitative clinical proteomics. Anal Chem 86(11):5470–5477. https://doi.org/10.1021/ac5008317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lassek C, Burghartz M, Chaves-Moreno D, Otto A, Hentschker C, Fuchs S, Bernhardt J, Jauregui R, Neubauer R, Becher D, Pieper DH, Jahn M, Jahn D, Riedel K (2015) A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections. Mol Cell Proteomics 14(4):989–1008. https://doi.org/10.1074/mcp.M114.043463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Magistro G, Stief CG (2018) The urinary tract microbiome: the answer to all our open questions? Eur Urol Focus 5(1):36–38. https://doi.org/10.1016/j.euf.2018.06.011; pii: S2405-4569(18)30159-7

    Article  PubMed  Google Scholar 

  14. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860

    Article  Google Scholar 

  15. Yu Y, Smith M, Pieper R (2014) A spinnable and automatable StageTip for high throughput peptide desalting and proteomics. Protocol Exchange. https://doi.org/10.1038/protex.2014.1033

  16. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  17. Lundgren DH, Hwang SI, Wu L, Han DK (2010) Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 7(1):39–53. https://doi.org/10.1586/epr.09.69

    Article  CAS  PubMed  Google Scholar 

  18. Liao B, Ning Z, Cheng K, Zhang X, Li L, Mayne J, Figeys D (2018) iMetaLab 1.0: a web platform for metaproteomics data analysis. Bioinformatics 34(22):3954–3956. https://doi.org/10.1093/bioinformatics/bty466

    Article  CAS  PubMed  Google Scholar 

  19. Wiśniewski JR (2018) Filter-aided sample preparation for proteome analysis. In: Becher D (ed) Microbial proteomics: methods and protocols. Springer, New York, NY, pp 3–10. https://doi.org/10.1007/978-1-4939-8695-8_1

    Chapter  Google Scholar 

  20. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906

    Article  CAS  PubMed  Google Scholar 

  21. Beyter D, Lin MS, Yu Y, Pieper R, Bafna V (2018) ProteoStorm: an ultrafast metaproteomics database search framework. Cell Syst 7(4):463–467. https://doi.org/10.1016/j.cels.2018.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grant NIH-1R01GM103598 (National Institute of General Medical Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbao Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, Y., Pieper, R. (2019). Using Proteomics to Identify Inflammation During Urinary Tract Infection. In: Pearson, M. (eds) Proteus mirabilis. Methods in Molecular Biology, vol 2021. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9601-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9601-8_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9600-1

  • Online ISBN: 978-1-4939-9601-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics