Advertisement

Identification of the Antigen Content of Electroimmunoprecipitates

  • N. Helena Beyer
  • Niels H. H. Heegaard
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2024)

Abstract

Polyclonal antibodies including purified antibody fractions and animal or human antisera may react with unknown antigens or antigens other than their main specificity in reactions that are best visualized by gel electroimmunoprecipitation methods (e.g., when analyzing complex antigen mixtures). The great advantage of gel immunoprecipitation approaches is that each immunoprecipitate contains antigen in a pure form and that the precipitate is separated by position, shape, and size from other precipitates in the complex patterns of crossed immunoelectrophoresis. The identification of the antigen content of such immunoprecipitates is important but challenging because of the very stable, high-affinity complex formation leading to precipitation in the gels. Here, we present detailed step-by-step recipes for identifying the antigen content of electroimmunoprecipitates.

Key words

Antigen identification Mass spectrometry Immunoelectrophoresis Immunoprecipitates Electroimmunoprecipitation Antigen Antibody Dissolution of immunoprecipitates 

References

  1. 1.
    Axelsen NH, Bock E (1983) Electroimmunoassay (rocket immunoelectrophoresis). In: Axelsen NH (ed) Handbook of immunoprecipitation-in-gel techniques. Blackwell, Oxford, pp 103–106Google Scholar
  2. 2.
    Grubb AO (1983) Crossed immunoelectrophoresis. In: Axelsen NH (ed) Handbook of immunoprecipitation-in-gel techniques. Blackwell, Oxford, pp 113–124Google Scholar
  3. 3.
    Laurell CB (1966) Quantitative estimation of proteins by electrophoresis in agarose gel containing antibodies. Anal Biochem 15:45–52CrossRefGoogle Scholar
  4. 4.
    Bjerrum OJ, Hagen I (1983) Biomolecular characterization of membrane antigens. In: Bjerrum OJ (ed) Electroimmunochemical analysis of membrane proteins. Elsevier, Amsterdam, pp 112–126Google Scholar
  5. 5.
    Koch C, Skjodt K, Laursen I (1985) A simple immunoblotting method after separation of proteins in agarose gel. J Immunol Methods 84:271–278CrossRefGoogle Scholar
  6. 6.
    Bjerrum OJ, Selmer JC, Lihme A (1987) Native immunoblotting – transfer of membrane-proteins in the presence of non-ionic detergent. Electrophoresis 8:388–397CrossRefGoogle Scholar
  7. 7.
    Krøll J (1983) Tandem crossed immunoelectrophoresis. In: Axelsen NH (ed) Handbook of immunoprecipitation-in-gel techniques. Blackwell, Oxford, pp 135–140Google Scholar
  8. 8.
    Axelsen NH (1983) Intermediate gel immunoelectrophoresis. In: Axelsen NH (ed) Handbook of immunoprecipitation-in-gel techniques. Blackwell, Oxford, pp 141–149Google Scholar
  9. 9.
    Vandvik B, Nordal HJ, Vartdal F, Nilsen RE, Norrby E (1983) Imprint immunofixation of antibodies separated by agarose electrophoresis or by electrofocusing. In: Axelsen NH (ed) Handbook of immunoprecipitation-in-gel techniques. Blackwell, Oxford, pp 33–37Google Scholar
  10. 10.
    Norrild B, Bjerrum OJ, Vestergaard BF (1977) Polypeptide analysis of individual immunoprecipitates from crossed immunoelectrophoresis. Anal Biochem 81:432–441CrossRefGoogle Scholar
  11. 11.
    Svendsen PJ, Weeke B, Johansson B-G (1983) Chemicals, solutions, equipment and general procedures. In: Axelsen NH (ed) Handbook of immunoprecipitation-in-gel techniques. Blackwell, Oxford, pp 3–20Google Scholar
  12. 12.
    Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858CrossRefGoogle Scholar
  13. 13.
    Beyer NH, Schou C, Houen G, Heegaard NHH (2008) Extraction and identification of electroimmunoprecipitated proteins from agarose gels. J Immunol Methods 330(1–2):24–33CrossRefGoogle Scholar
  14. 14.
    Heegaard NHH (1990) Immunochemical characterization of interactions between circulating autologous IgG and normal erythrocyte membrane proteins. Biochim Biophys Acta 1023:239–246CrossRefGoogle Scholar
  15. 15.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  16. 16.
    Gobom J, Schuerenberg M, Mueller M, Theiss D, Lehrach H, Nordhoff E (2001) Alpha-cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Anal Chem 73(3):434–438CrossRefGoogle Scholar
  17. 17.
    Kussmann M, Lässing U, Stürmer CA, Przybylski M, Roepstorff P (1997) Matrix-assisted laser desorption/ionization mass spectrometric peptide mapping of the neural cell adhesion protein neurolin purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis or acidic precipitation. J Mass Spectrom 32(5):483–493CrossRefGoogle Scholar
  18. 18.
    Mancini G, Carbonara AO, Heremans JF (1965) Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2:235CrossRefGoogle Scholar
  19. 19.
    Sen JW, Recke C, Rahbek L, Skogstrand K, Heegaard NH (2002) Structural, quantitative and functional comparison of amyloid P component in sera from patients with systemic lupus erythematosus and healthy donors. Scand J Immunol 56:645CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. Helena Beyer
    • 1
  • Niels H. H. Heegaard
    • 1
    • 2
  1. 1.Department of Autoimmunology and BiomarkersStatens Serum InstitutCopenhagenDenmark
  2. 2.Department of Clinical BiochemistryUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations