Advertisement

Classical Immunoproteomics: Serological Proteome Analysis (SERPA) for Antigen Identification

  • Kelly M. FultonEmail author
  • Anna Ananchenko
  • Lawrence Wolfraim
  • Shannon Martin
  • Susan M. Twine
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2024)

Abstract

The study of the humoral immune response to infectious and chronic diseases is important for understanding the disease progression, identification of protective antigens, vaccine development, and discovery of biomarkers for early diagnosis. Proteomic approaches, including serological proteome analysis (SERPA), have been used to identify the repertoire of immunoreactive proteins in various diseases. In this chapter, we provide an outline of the SERPA approach, using the analysis of sera from mice vaccinated with a live attenuated tularemia vaccine as an example.

Key words

SERPA Serological proteome analysis Western blotting Immunoproteomics Comparative immunoproteomics Francisella Tularemia Live vaccine strain Immunoreactivity Antigens Biomarkers 

Notes

Acknowledgments

This work was supported by federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Contract No. HHSN266200500041C, and in part by the National Research Council, Canada. The authors thank Dr Freyja Lynn, Vicki Pierson, Kristin Debord, and Patrick Sanz (National Institutes of Allergy and Infectious Diseases); Dr J. Wayne Conlan, Luc Tessier, and Marianne Savicky (National Research Council, Canada); and Gretchen Stup (DynPort Vaccine Company) for their contributions throughout this work.

References

  1. 1.
    Engelfried JJ, Spear F (1966) Modified agglutination test for Pasteurella tularensis. Appl Microbiol 14:267–270PubMedPubMedCentralGoogle Scholar
  2. 2.
    Carlsson HE, Lindberg AA, Lindberg G et al (1979) Enzyme-linked immunosorbent assay for immunological diagnosis of human tularemia. J Clin Microbiol 10:615–621PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bevanger L, Maeland JA, Naess AI (1988) Agglutinins and antibodies to Francisella tularensis outer membrane antigens in the early diagnosis of disease during an outbreak of tularemia. J Clin Microbiol 26:433–437PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kilmury SLN, Twine SM (2010) The Francisella tularensis proteome and its recognition by antibodies. Front Microbiol 1:143PubMedGoogle Scholar
  5. 5.
    Vytvytska O, Nagy E, Blüggel M et al (2002) Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2:580–590CrossRefGoogle Scholar
  6. 6.
    Klade CS (2002) Proteomics approaches towards antigen discovery and vaccine development. Curr Opin Mol Ther 4:216–223PubMedGoogle Scholar
  7. 7.
    Pizarro-Guajardo M, Ravanal MC, Paez MD et al (2018) Identification of Clostridium difficile immunoreactive spore proteins of the epidemic strain R20291. Proteomics Clin Appl 12:e1700182CrossRefGoogle Scholar
  8. 8.
    Pang H-Y, Li Y, Wu Z-H et al (2010) Immunoproteomic analysis and identification of novel immunogenic proteins from Vibrio harveyi. J Appl Microbiol 109:1800–1809PubMedGoogle Scholar
  9. 9.
    Li H, Ye M-Z, Peng B et al (2010) Immunoproteomic identification of polyvalent vaccine candidates from Vibrio parahaemolyticus outer membrane proteins. J Proteome Res 9:2573–2583CrossRefGoogle Scholar
  10. 10.
    Dai L, Li J, Tsay J-CJ et al (2017) Identification of autoantibodies to ECH1 and HNRNPA2B1 as potential biomarkers in the early detection of lung cancer. Oncoimmunology 6:e1310359CrossRefGoogle Scholar
  11. 11.
    Parida SK, Kaufmann SHE (2010) The quest for biomarkers in tuberculosis. Drug Discov Today 15:148–157CrossRefGoogle Scholar
  12. 12.
    Tan HT, Low J, Lim SG, Chung MCM (2009) Serum autoantibodies as biomarkers for early cancer detection. FEBS J 276:6880–6904CrossRefGoogle Scholar
  13. 13.
    Desmetz C, Mange A, Maudelonde T, Solassol J (2011) Autoantibody signatures: progress and perspectives for early cancer detection. J Cell Mol Med 15:2013–2024CrossRefGoogle Scholar
  14. 14.
    Forgber M, Trefzer U, Sterry W, Walden P (2009) Proteome serological determination of tumor-associated antigens in melanoma. PLoS One 4:e5199CrossRefGoogle Scholar
  15. 15.
    Gao H, Zheng Z, Mao Y et al (2014) Identification of tumor antigens that elicit a humoral immune response in the sera of Chinese esophageal squamous cell carcinoma patients by modified serological proteome analysis. Cancer Lett 344:54–61CrossRefGoogle Scholar
  16. 16.
    Klein-Scory S, Kübler S, Diehl H et al (2010) Immunoscreening of the extracellular proteome of colorectal cancer cells. BMC Cancer 10:70CrossRefGoogle Scholar
  17. 17.
    Mustafa MZ, Nguyen VH, Le Naour F et al (2016) Autoantibody signatures defined by serological proteome analysis in sera from patients with cholangiocarcinoma. J Transl Med 14:17CrossRefGoogle Scholar
  18. 18.
    Dai L, Qu Y, Li J et al (2017) Serological proteome analysis approach-based identification of ENO1 as a tumor-associated antigen and its autoantibody could enhance the sensitivity of CEA and CYFRA 21-1 in the detection of non-small cell lung cancer. Oncotarget 8:36664–36673PubMedPubMedCentralGoogle Scholar
  19. 19.
    Krah A, Miehlke S, Pleissner K-P et al (2004) Identification of candidate antigens for serologic detection of Helicobacter pylori-infected patients with gastric carcinoma. Int J Cancer 108:456–463CrossRefGoogle Scholar
  20. 20.
    Colomba P, Fontana S, Salemi G et al (2014) Identification of biomarkers in cerebrospinal fluid and serum of multiple sclerosis patients by immunoproteomics approach. Int J Mol Sci 15:23269–23282CrossRefGoogle Scholar
  21. 21.
    Grandjean M, Sermeus A, Branders S et al (2013) Hypoxia integration in the serological proteome analysis unmasks tumor antigens and fosters the identification of anti-phospho-eEF2 antibodies as potential cancer biomarkers. PLoS One 8:e76508CrossRefGoogle Scholar
  22. 22.
    Biswas S, Sharma S, Saroha A et al (2013) Identification of novel autoantigen in the synovial fluid of rheumatoid arthritis patients using an immunoproteomics approach. PLoS One 8:e56246CrossRefGoogle Scholar
  23. 23.
    Yang L, Fujimoto M, Murota H et al (2015) Proteomic identification of heterogeneous nuclear ribonucleoprotein K as a novel cold-associated autoantigen in patients with secondary Raynaud’s phenomenon. Rheumatology 54:349–358CrossRefGoogle Scholar
  24. 24.
    Loshaj-Shala A, Colzani M, Brezovska K et al (2018) Immunoproteomic identification of antigenic candidate Campylobacter jejuni and human peripheral nerve proteins involved in Guillain-Barré syndrome. J Neuroimmunol 317:77–83CrossRefGoogle Scholar
  25. 25.
    Eliasson H, Broman T, Forsman M, Bäck E (2006) Tularemia: current epidemiology and disease management. Infect Dis Clin N Am 20:289–311, ixCrossRefGoogle Scholar
  26. 26.
    Zilinskas RA (2017) A brief history of biological weapons programmes and the use of animal pathogens as biological warfare agents. Rev Sci Tech 36:415–422CrossRefGoogle Scholar
  27. 27.
    Dennis DT, Inglesby TV, Henderson DA et al (2001) Tularemia as a biological weapon: medical and public health management. JAMA 285:2763–2773CrossRefGoogle Scholar
  28. 28.
    Twine SM, Petit MD, Shen H et al (2006) Immunoproteomic analysis of the murine antibody response to successful and failed immunization with live anti-Francisella vaccines. Biochem Biophys Res Commun 346:999–1008CrossRefGoogle Scholar
  29. 29.
    Twine SM, Mykytczuk NCS, Petit MD et al (2006) In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun 345:1621–1633CrossRefGoogle Scholar
  30. 30.
    Twine SM, Petit MD, Fulton KM et al (2010) Immunoproteomics analysis of the murine antibody response to vaccination with an improved Francisella tularensis live vaccine strain (LVS). PLoS One 5:e10000CrossRefGoogle Scholar
  31. 31.
    Thomas RM, Twine SM, Fulton KM et al (2011) Glycosylation of DsbA in Francisella tularensis subspecies tularensis. J Bacteriol.  https://doi.org/10.1128/JB.00438-11CrossRefGoogle Scholar
  32. 32.
    Havlasová J, Hernychová L, Halada P et al (2002) Mapping of immunoreactive antigens of Francisella tularensis live vaccine strain. Proteomics 2:857–867CrossRefGoogle Scholar
  33. 33.
    Havlasová J, Hernychová L, Brychta M et al (2005) Proteomic analysis of anti-Francisella tularensis LVS antibody response in murine model of tularemia. Proteomics 5:2090–2103CrossRefGoogle Scholar
  34. 34.
    Janovská S, Pávková I, Reichelová M et al (2007) Proteomic analysis of antibody response in a case of laboratory-acquired infection with Francisella tularensis subsp. tularensis. Folia Microbiol 52:194–198CrossRefGoogle Scholar
  35. 35.
    Janovská S, Pávková I, Hubálek M et al (2007) Identification of immunoreactive antigens in membrane proteins enriched fraction from Francisella tularensis LVS. Immunol Lett 108:151–159CrossRefGoogle Scholar
  36. 36.
    Huntley JF, Conley PG, Hagman KE, Norgard MV (2007) Characterization of Francisella tularensis outer membrane proteins. J Bacteriol 189:561–574CrossRefGoogle Scholar
  37. 37.
    Huntley JF, Conley PG, Rasko DA et al (2008) Native outer membrane proteins protect mice against pulmonary challenge with virulent type A Francisella tularensis. Infect Immun 76:3664–3671CrossRefGoogle Scholar
  38. 38.
    Straskova A, Spidlova P, Mou S et al (2015) Francisella tularensis type B ΔdsbA mutant protects against type A strain and induces strong inflammatory cytokine and Th1-like antibody response in vivo. Pathog Dis 73:ftv058CrossRefGoogle Scholar
  39. 39.
    Post DMB, Slütter B, Schilling B et al (2017) Characterization of inner and outer membrane proteins from Francisella tularensis strains LVS and Schu S4 and identification of potential subunit vaccine candidates. MBio 8.  https://doi.org/10.1128/mBio.01592-17
  40. 40.
    Njeru J, Tomaso H, Mertens K et al (2017) Serological evidence of Francisella tularensis in febrile patients seeking treatment at remote hospitals, northeastern Kenya, 2014–2015. New Microbes New Infect 19:62–66CrossRefGoogle Scholar
  41. 41.
    Zákutná Ľ, Dorko E, Rimárová K, Kizeková M (2015) Pilot cross-sectional study of three zoonoses (Lyme disease, Tularaemia, Leptospirosis) among healthy blood donors in eastern Slovakia. Cent Eur J Public Health 23:100–106CrossRefGoogle Scholar
  42. 42.
    Chandler JC, Sutherland MD, Harton MR et al (2015) Francisella tularensis LVS surface and membrane proteins as targets of effective post-exposure immunization for tularemia. J Proteome Res 14:664–675CrossRefGoogle Scholar
  43. 43.
    Lu Z, Perkins HM, Sharon J (2014) Antibodies to both terminal and internal B-cell epitopes of Francisella tularensis O-polysaccharide produced by patients with tularemia. Clin Vaccine Immunol 21:227–233CrossRefGoogle Scholar
  44. 44.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  45. 45.
    Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kelly M. Fulton
    • 1
    Email author
  • Anna Ananchenko
    • 1
  • Lawrence Wolfraim
    • 2
  • Shannon Martin
    • 2
  • Susan M. Twine
    • 1
  1. 1.Human Health Therapeutics Research CentreNational Research Council of CanadaOttawaCanada
  2. 2.Dynport Vaccine Company LLCFrederickUSA

Personalised recommendations