Genome-Based Bioinformatic Prediction of Major Histocompatibility (MHC)

  • Simon J. FooteEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2024)


Over the last 17 years, a large amount of knowledge has been accumulated on various aspects of major histocompatibility complex (MHC) molecules. In conjunction, numerous algorithms and tools have been developed to screen protein molecules for these MHC receptor sites. By combining these computational tools and databases with genomic sequence information that is now widely available for a vast range of organisms, it is possible to screen whole genomes for MHC epitopes. By pre-screening these genomes, it allows the researcher to narrow down possible protein targets for further analysis by traditional tools such as gene knockouts and animal efficacy studies.

Key words

MHC epitope prediction MHC ligand T cell Antigen 


  1. 1.
    Falk K, Rötzschke O, Stevanović S et al (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296CrossRefGoogle Scholar
  2. 2.
    Chicz RM, Urban RG, Gorga JC et al (1993) Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 178:27–47CrossRefGoogle Scholar
  3. 3.
    Shen H, Harris G, Chen W et al (2010) Molecular immune responses to aerosol challenge with Francisella tularensis in mice inoculated with live vaccine candidates of varying efficacy. PLoS One 5:e13349CrossRefGoogle Scholar
  4. 4.
    Singh H, Raghava GPS (2003) ProPred1: prediction of promiscuous MHC Class-I binding sites. Bioinformatics 19:1009–1014CrossRefGoogle Scholar
  5. 5.
    Jurtz V, Paul S, Andreatta M, Marcatili P et al (2017) NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199(9):3360–3368CrossRefGoogle Scholar
  6. 6.
    Jensen KK, Andreatta M, Marcatili P et al (2018) Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology 154:394–406CrossRefGoogle Scholar
  7. 7.
    Zhang L, Chen Y, Wong H-S et al (2012) TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One 7:e30483CrossRefGoogle Scholar
  8. 8.
    Lata S, Bhasin M, Raghava GPS (2009) MHCBN 4.0: a database of MHC/TAP binding peptides and T-cell epitopes. BMC Res Notes 2:61CrossRefGoogle Scholar
  9. 9.
    Reche PA, Glutting J-P, Zhang H, Reinherz EL (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56:405–419CrossRefGoogle Scholar
  10. 10.
    Vita R, Zarebski L, Greenbaum JA et al (2010) The immune epitope database 2.0. Nucleic Acids Res 38:D854–D862CrossRefGoogle Scholar
  11. 11.
    Gardy JL, Spencer C, Wang K et al (2003) PSORT-B: improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res 31:3613–3617CrossRefGoogle Scholar
  12. 12.
    Nielsen H (2017) Predicting secretory proteins with SignalP. Methods Mol Biol 1611:59–73CrossRefGoogle Scholar
  13. 13.
    Bendtsen JD, Kiemer L, Fausbøll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiol 5:58CrossRefGoogle Scholar
  14. 14.
    Bendtsen JD, Jensen LJ, Blom N et al (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356CrossRefGoogle Scholar
  15. 15.
    Juncker AS, Willenbrock H, Von Heijne G et al (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12:1652–1662CrossRefGoogle Scholar
  16. 16.
    Lin HH, Ray S, Tongchusak S et al (2008) Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol 9:8CrossRefGoogle Scholar
  17. 17.
    Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S (2015) An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform 53:405–414CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Human Health Therapeutics Research CentreNational Research Council CanadaOttawaCanada

Personalised recommendations