Advertisement

Mass Spectrometric Identification and Molecular Modeling of Glycopeptides Presented by MHC Class I and II Processing Pathways

  • Stacy A. Malaker
  • Michael J. FerracaneEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2024)

Abstract

Aberrant glycosylation is a hallmark of cancer that contributes to the disease’s ability to evade the immune system. As the MHC processing pathways communicate cellular health to circulating CD8+ and CD4+ T-cells, MHC-associated glycopeptides are likely a source of neoantigens in cancer. In fact, recent advances in mass spectrometry have allowed for the detection and sequencing of tumor-specific glycopeptides from the MHC class I and class II processing pathways. Here, we describe methods for detecting, sequencing, and modeling these MHC-associated glycopeptides.

Key words

Mass spectrometry MHC-associated glycopeptides Glycopeptide analysis Neoantigens Molecular modeling 

Notes

Acknowledgments

The authors would like to acknowledge Jane V. Aldrich (U Florida), Dina L. Bai, Jeffrey Shabanowitz, and Donald F. Hunt (U Virginia) for their technical and financial support. This work was supported by a research grant from the Melanoma Research Alliance and by an NIH grant AI033993 to D.F.H. S.A.M. is currently funded by an NIH F32 Postdoctoral fellowship.

References

  1. 1.
    Pinho SS, Reis CA (2015) Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 15:540–555CrossRefGoogle Scholar
  2. 2.
    Haurum JS, Tan L, Arsequell G, Frodsham P, Lellouch AC, Moss PA et al (1995) Peptide anchor residue glycosylation: effect on class I major histocompatibility complex binding and cytotoxic T lymphocyte recognition. Eur J Immunol 25:3270–3276CrossRefGoogle Scholar
  3. 3.
    Haurum JS, Arsequell G, Lellouch AC, Wong SY, Dwek RA, McMichael AJ et al (1994) Recognition of carbohydrate by major histocompatibility complex class I restricted, glycopeptide-specific cytotoxic T lymphocytes. J Exp Med 180:739–744CrossRefGoogle Scholar
  4. 4.
    Kastrup IB, Stevanovic S, Arsequell G, Valencia G, Zeuthen J, Rammensee HG et al (2000) Lectin purified human class I MHC-derived peptides: evidence for presentation of glycopeptides in vivo. Tissue Antigens 56:129–135CrossRefGoogle Scholar
  5. 5.
    Glithero A, Tormo J, Harurum JS, Arsequell G, Valencia G, Edwards J, Springer S et al (1999) Crystal structures of two H-2Db/glycopeptide complexes suggest a molecular basis for CTL cross-reactivity. Immunity 10:63–74CrossRefGoogle Scholar
  6. 6.
    Dzhambazov B, Holmdahl M, Yamada H, Lu S, Vestberg M, Holm B, Johnell O, Kilberg J, Holmdahl R (2005) The major T cell epitope on type II collagen is glycosylated in normal cartilage but modified by arthritis in both rats and humans. Eur J Immunol 35(2):357–366CrossRefGoogle Scholar
  7. 7.
    Mastrangelo A, Colasanti T, Barbati C, Pecani A, Sabatinelli D, Truglia S, Massaro L et al (2015) The role of posttranslational protein modifications in rheumatological diseases: focus on rheumatoid arthritis. J Immunol Res 2015:712490CrossRefGoogle Scholar
  8. 8.
    Housseau F, Moorthy A, Langer DA, Robbins PF, Gonzales MI, Topalian SL (2001) N-linked carbohydrates in tyrosinase are required for its recognition by human MHC class II-restricted CD4+ T cells. Eur J Immunol 31:2690–2701CrossRefGoogle Scholar
  9. 9.
    Chicz RM, Urban RG, Gorga JC, Vignali DA, Lane WS, Strominger JL (1993) Specificity and promiscuity among naturally process peptides bound to HLA-DR alleles. J Exp Med 178(1):27–47CrossRefGoogle Scholar
  10. 10.
    Dengjel J, Rammensee HG, Stavnovic S (2005) Glycan side chains on naturally presented MHC class II ligands. J Mass Spectrom 40(1):100–104CrossRefGoogle Scholar
  11. 11.
    Bern M, Kil YJ, Becker C (2012) Byonic: advanced peptide and protein identification software. Curr Protoc Bioinformatics 13:Unit 13.20Google Scholar
  12. 12.
    Malaker SA, Ferracane MJ, Depntieu FR, Zarling AL, Shabanowitz J, Bai DL, Topalian SL, Engelhard VH, Hunt DH (2017) Identification and characterization of complex glycosylated peptides presented by the MHC class II processing pathway in melanoma. J Prot Res 16:228–237CrossRefGoogle Scholar
  13. 13.
    Malaker SA, Penny SA, Steadman LG, Myers PT, Loke JC, Raghavan M, Bai DL, Shabanowitz J, Hunt DF, Cobbold M (2017) Identification of glycopeptides as posttranslationally modified neoantigens in leukemia. Cancer Immunol Res 5(5):376–384CrossRefGoogle Scholar
  14. 14.
    Martin SE, Shabanowitz J, Hunt DF, Marto JA (2000) Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 72:4266–4274CrossRefGoogle Scholar
  15. 15.
    Molecular Operating Environment (MOE), 2014.09; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2015Google Scholar
  16. 16.
    Cobbold M, De La Pena H, Norris A, Polefrone JM, Qian J, English AM, Abelin JG, Malaker SA et al (2013) MHC Class I–Associated Phosphopeptides Are the Targets of Memory-like Immunity in Leukemia. Sci Transl Med 5(203):203ra125CrossRefGoogle Scholar
  17. 17.
    Depontieu FR, Qian J, Zarling AL, McMiller TL, Salay TM, Norris A, English AM et al (2009) Identification of tumor-association, MHC class I-restricted phosphopeptides as targets for immunotherapy. Proc Natl Acad Sci U S A 106(29):12073–12078CrossRefGoogle Scholar
  18. 18.
    Udeshi ND, Compton PD, Shabanowitz J, Hunt DF, Rose KL (2008) Methods for analyzing peptides and proteins on a chromatographic timescale by electron-transfer dissociation mass spectrometry. Nat Protoc 3:1709–1717CrossRefGoogle Scholar
  19. 19.
    Engelhard VH, Brickner AG, Zarling AL (2002) Insights into antigen processing gained by direct analysis of the naturally processed class I MHC associated peptide repertoire. Mol Immunol 39(3–4):127–137CrossRefGoogle Scholar
  20. 20.
    Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533CrossRefGoogle Scholar
  21. 21.
    Papayannopooulos IA (1995) The interpretation of collision-induced dissociation of tandem mass spectra of peptides. Mass Spectrom Rev 14(1):49–73CrossRefGoogle Scholar
  22. 22.
    Hunt DF, Shabanowitz DF, Bai DL (2015) Peptide sequence analysis by electron transfer dissociation mass spectrometry: a web-based tutorial. J Am Soc Mass Spectrom 26(7):1252–1255CrossRefGoogle Scholar
  23. 23.
    Petersen K, Montserrat V, Mujico JR, Loh KL, Beringer DX, van Lummel M et al (2014) T-cell receptor recognition of HLA-DQ2-gliadin complexes associated with celiac disease. Nat Struct Mol Biol 21(5):480–488CrossRefGoogle Scholar
  24. 24.
    Yin Y, Wang XX, Mariuzza RA (2012) Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4. Proc Natl Acad Sci U S A 109(14):5405–5410CrossRefGoogle Scholar
  25. 25.
    Rodstrom KE, Elbing K, Lindkvist-Petersson K (2014) Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts. J Immunol 193(4):1998–2004CrossRefGoogle Scholar
  26. 26.
    Deng L, Langley RJ, Brown PH, Xu G, Teng L, Wang Q et al (2007) Structural basis for the recognition of mutant self by a tumor-specific, MHC class II-restricted T cell receptor. Nat Immunol 8(4):398–408CrossRefGoogle Scholar
  27. 27.
    Hennecke J, Carfi A, Wiley DC (2000) Structure of a covalently stabilized complex of a human alphabeta T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J 19(21):5611–5624CrossRefGoogle Scholar
  28. 28.
    Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, Harrison SC (2005) Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433(7028):834–841CrossRefGoogle Scholar
  29. 29.
    Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner PA (1984) New force-field for molecular mechanical simulation of nucleic-acids and proteins. J Am Chem Soc 106(3):765–784CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Department of ChemistryUniversity of RedlandsRedlandsUSA

Personalised recommendations