Advertisement

Enrichment of Phosphorylated MHC Peptides with Immobilized Metal Affinity Chromatography and Titanium Dioxide Particles

  • Rui Chen
  • Jianjun LiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2024)

Abstract

Phosphorylation is one of the most important forms of posttranslational modification. Dysregulation of phosphorylation is implicated in tumorigenesis, with cancerous signaling pathways activated by kinases. For immunotherapy with neoantigen-based peptides, phosphopeptides derived from aberrantly phosphorylated proteins presented by major histocompatibility complex (MHC) are promising candidates due to their specificity to elicit cytotoxic T-cell responses. Unlike other MHC peptides, phosphorylated MHC peptides cannot be predicted from DNA sequences, and their identification relies on the direct detection of phosphopeptides using mass spectrometry (MS). For MS detection, it is extremely important to enrich phosphorylated peptides from the complex repertoire of MHC peptides. Herein, we describe the combined use of immobilized metal affinity chromatography and titanium dioxide nanoparticles for phosphopeptides enrichment from immunopeptidome.

Key words

Immunotherapy MHC peptides Phosphorylation IMAC LC-MS/MS 

References

  1. 1.
    Hunter T (2000) Signaling—2000 and beyond. Cell 100:113–127CrossRefGoogle Scholar
  2. 2.
    Ubersax JA, Ferrell JE Jr (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Bio 8:530–541CrossRefGoogle Scholar
  3. 3.
    Brognard J, Hunter T (2011) Protein kinase signaling networks in cancer. Curr Opin Genet Dev 21:4–11CrossRefGoogle Scholar
  4. 4.
    Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189CrossRefGoogle Scholar
  5. 5.
    Francavilla C, Lupia M, Tsafou K, Villa A, Kowalczyk K, Jersie-Christensen RR et al (2017) Phosphoproteomics of primary cells reveals druggable kinase signatures in ovarian cancer. Cell Rep 18:3242–3256CrossRefGoogle Scholar
  6. 6.
    Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA, Shabanowitz J et al (2008) Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat Immunol 9:1236–1243CrossRefGoogle Scholar
  7. 7.
    Locard-Paulet M, Lim L, Veluscek G, McMahon K, Sinclair J, Van Weverwijk A et al (2016) Phosphoproteomic analysis of interacting tumor and endothelial cells identifies regulatory mechanisms of transendothelial migration. Sci Signal 9:ra15-ra15CrossRefGoogle Scholar
  8. 8.
    Yi T, Zhai B, Yu Y, Kiyotsugu Y, Raschle T, Etzkorn M et al (2014) Quantitative phosphoproteomic analysis reveals system-wide signaling pathways downstream of SDF-1/CXCR4 in breast cancer stem cells. Proc Natl Acad Sci U S A 111:E2182–E2190CrossRefGoogle Scholar
  9. 9.
    K-L H, Li S, Mertins P, Cao S, Gunawardena HP, Ruggles KV et al (2017) Proteogenomic integration reveals therapeutic targets in breast cancer xenografts. Nat Commun 8:14864CrossRefGoogle Scholar
  10. 10.
    Dazert E, Colombi M, Boldanova T, Moes S, Adametz D, Quagliata L et al (2016) Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proc Natl Acad Sci U S A 113:1381–1386CrossRefGoogle Scholar
  11. 11.
    Zarling AL, Polefrone JM, Evans AM, Mikesh LM, Shabanowitz J, Lewis ST et al (2016) Identification of class I MHC-associated phosphopeptides as targets for cancer immunotherapy. Proc Natl Acad Sci U S A 103:14889–14894CrossRefGoogle Scholar
  12. 12.
    Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S et al (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404CrossRefGoogle Scholar
  13. 13.
    Laumont CM, Daouda T, Laverdure J-P, Bonneil É, Caron-Lizotte O, Hardy M-P et al (2016) Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat Commun 7:10238CrossRefGoogle Scholar
  14. 14.
    Olsen JV, Mann M (2013) Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol Cell Proteomics 12:3444–3452CrossRefGoogle Scholar
  15. 15.
    Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250–254CrossRefGoogle Scholar
  16. 16.
    Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76:3935–3943CrossRefGoogle Scholar
  17. 17.
    Zhou H, Low TY, Hennrich ML, van der Toorn H, Schwend T, Zou H et al (2011) Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Mol Cell Proteomics 10:M110.006452CrossRefGoogle Scholar
  18. 18.
    Potel CM, Lin M-H, Heck AJ, Lemeer S (2018) Defeating major contaminants in Fe3+-IMAC phosphopeptide enrichment. Mol Cell Proteomics 17:1028–1034CrossRefGoogle Scholar
  19. 19.
    Abelin JG, Trantham PD, Penny SA, Patterson AM, Ward ST, Hildebrand WH et al (2015) Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry. Nat Protoc 10:1308–1318CrossRefGoogle Scholar
  20. 20.
    Chen R, Fauteux F, Foote S, Stupak J, Tremblay T-L, Gurnani K et al (2018) Chemical derivatization strategy for extending the identification of MHC class I immunopeptides. Anal Chem 90:11409–11416CrossRefGoogle Scholar
  21. 21.
    Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Human Health Therapeutics Research CentreNational Research Council CanadaOttawaCanada

Personalised recommendations