Skip to main content

Assessing the Structure and Function of Vaccinia Virus Gene Products by Transient Complementation

  • Protocol
  • First Online:
Vaccinia Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2023))

Abstract

Poxviruses are large, complex dsDNA viruses that are highly unusual in replicating solely within the cytoplasm of the infected cell. The most infamous poxvirus was variola virus, the etiological agent of smallpox; today, poxviruses remain of biomedical significance, both as pathogens and as recombinant vaccines and oncolytic therapies. Vaccinia virus is the prototypic poxvirus for experimental analysis. The 195 kb dsDNA genome contains >200 genes that encode proteins involved in such processes as viral entry, gene expression, genome replication and maturation, virion assembly, virion egress, and immune evasion.

Molecular genetic analysis has been instrumental in the study of the structure and function of many viral gene products. Temperature-sensitive (ts) mutants have been especially useful in this endeavor; inducible recombinants and deletion mutants are now also important tools. Once a phenotype is observed following the repression, deletion, or inactivation of a particular gene product, the technique of transient complementation becomes central for further study.

Simply put, transient complementation involves the transient expression of a variety of alleles of a given viral gene within infected cells, and the evaluation of which of these alleles can “complement” or “rescue” the phenotype caused by the loss of the endogenous allele. This analysis leads to the identification of key domains, motifs, and sites of posttranslational modification. Subcellular localization and protein:protein interactions can also be evaluated in these studies. The development of a reliable toolbox of vectors encoding viral promoters of different temporal classes, and the use of a variety of epitope tags, has greatly enhanced the utility of this experimental approach for poxvirus research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss B (2013) Poxviridae. In: Knipe DM, Howley PM (eds) Fields virology, vol 2, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PA, pp 2129–2159

    Google Scholar 

  2. Smith GL, Vanderplasschen A, Law M (2002) The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 83(Pt 12):2915–2931

    Article  CAS  PubMed  Google Scholar 

  3. Condit RC, Moussatche N, Traktman P (2006) In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res 66:31–124

    Article  CAS  PubMed  Google Scholar 

  4. Goebel SJ, Johnson GP, Perkus ME, Davis SW, Winslow JP, Paoletti E (1990) The complete DNA sequence of vaccinia virus. Virology 179(1):247–263

    Article  CAS  PubMed  Google Scholar 

  5. Davidson AJ, Moss B (1989) Structure of vaccinia virus early promoters. J Mol Biol 210:749–769

    Article  Google Scholar 

  6. Davison AJ, Moss B (1989) Structure of vaccinia virus late promoters. J Mol Biol 210(4):771–784

    Article  CAS  PubMed  Google Scholar 

  7. Yang Z, Reynolds SE, Martens CA, Bruno DP, Porcella SF, Moss B (2011) Expression profiling of the intermediate and late stages of poxvirus replication. J Virol 85(19):9899–9908. https://doi.org/10.1128/JVI.05446-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carroll MW, Moss B (1997) Poxviruses as expression vectors. Curr Opin Biotechnol 8(5):573–577

    Article  CAS  PubMed  Google Scholar 

  9. Moss B, Flexner C (1989) Vaccinia virus expression vectors. Ann N Y Acad Sci 569:86–103

    Article  CAS  PubMed  Google Scholar 

  10. Boyle KA, Arps L, Traktman P (2007) Biochemical and genetic analysis of the vaccinia virus d5 protein: multimerization-dependent ATPase activity is required to support viral DNA replication. J Virol 81(2):844–859

    Article  CAS  PubMed  Google Scholar 

  11. Mercer J, Traktman P (2003) Investigation of structural and functional motifs within the vaccinia virus A14 phosphoprotein, an essential component of the virion membrane. J Virol 77(16):8857–8871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nichols RJ, Stanitsa E, Unger B, Traktman P (2008) The vaccinia virus gene I2L encodes a membrane protein with an essential role in virion entry. J Virol 82(20):10,247–10,261

    Article  CAS  Google Scholar 

  13. Punjabi A, Traktman P (2005) Cell biological and functional characterization of the vaccinia virus F10 kinase: implications for the mechanism of virion morphogenesis. J Virol 79(4):2171–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wickramasekera NT, Traktman P (2010) Structure/function analysis of the vaccinia virus F18 phosphoprotein, an abundant core component required for virion maturation and infectivity. J Virol. https://doi.org/10.1128/JVI.00399-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lackner CA, D’Costa SM, Buck C, Condit RC (2003) Complementation analysis of the Dales collection of vaccinia virus temperature-sensitive mutants. Virology 305(2):240–259

    Article  CAS  PubMed  Google Scholar 

  16. Condit RC, Motyczka A (1981) Isolation and preliminary characterization of temperature-sensitive mutants of vaccinia virus. Virology 113(1):224–241

    Article  CAS  PubMed  Google Scholar 

  17. Condit RC, Motyczka A, Spizz G (1983) Isolation, characterization, and physical mapping of temperature—sensitive mutants of vaccinia virus. Virology 128(2):429–443

    Article  CAS  PubMed  Google Scholar 

  18. Traktman P, Caligiuri A, Jesty SA, Liu K, Sankar U (1995) Temperature-sensitive mutants with lesions in the vaccinia virus F10 kinase undergo arrest at the earliest stage of virion morphogenesis. J Virol 69(10):6581–6587

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Greseth MDCM, Bluma MS, Traktman P (2018) Isolation and characterization of vΔI3 confirm that Vaccinia virus SSB plays an essential role in viral replication. J Virol 92(2). https://doi.org/10.1128/JVI.01719-17

  20. DeMasi J, Traktman P (2000) Clustered charge-to-alanine mutagenesis of the vaccinia virus H5 gene: isolation of a dominant, temperature-sensitive mutant with a profound defect in morphogenesis. J Virol 74(5):2393–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Punjabi A, Boyle K, DeMasi J, Grubisha O, Unger B, Khanna M, Traktman P (2001) Clustered charge-to-alanine mutagenesis of the vaccinia virus A20 gene: temperature-sensitive mutants have a DNA-minus phenotype and are defective in the production of processive DNA polymerase activity. J Virol 75(24):12,308–12,318

    Article  CAS  Google Scholar 

  22. Unger B, Traktman P (2004) Vaccinia virus morphogenesis: A13 phosphoprotein is required for assembly of mature virions. J Virol 78(16):8885–8901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ansarah-Sobrinho C, Moss B (2004) Role of the I7 protein in proteolytic processing of vaccinia virus membrane and core components. J Virol 78(12):6335–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Szajner P, Weisberg AS, Moss B (2001) Unique temperature-sensitive defect in vaccinia virus morphogenesis maps to a single nucleotide substitution in the A30L gene. J Virol 75(22):11,222–11,226

    Article  CAS  Google Scholar 

  25. Wang S, Shuman S (1995) Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. J Virol 69(10):6376–6388

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishii K, Moss B (2001) Role of Vaccinia virus A20R protein in DNA replication: construction and characterization of temperature-sensitive mutants. J Virol 75(4):1656–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li J, Pennington MJ, Broyles SS (1994) Temperature-sensitive mutations in the gene encoding the small subunit of the vaccinia virus early transcription factor impair promoter binding, transcription activation, and packaging of multiple virion components. J Virol 68(4):2605–2614

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mercer J, Traktman P (2005) Genetic and cell biological characterization of the vaccinia virus A30 and G7 phosphoproteins. J Virol 79(11):7146–7161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wolffe EJ, Moore DM, Peters PJ, Moss B (1996) Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. J Virol 70(5):2797–2808

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Satheshkumar PS, Weisberg A, Moss B (2009) Vaccinia virus H7 protein contributes to the formation of crescent membrane precursors of immature Virions. J Virol. https://doi.org/10.1128/JVI.00877-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Unger B, Mercer J, Boyle KA, Traktman P (2013) Biogenesis of the vaccinia virus membrane: genetic and ultrastructural analysis of the contributions of the A14 and A17 proteins. J Virol 87(2):1083–1097. https://doi.org/10.1128/JVI.02529-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Traktman P, Liu K, DeMasi J, Rollins R, Jesty S, Unger B (2000) Elucidating the essential role of the A14 phosphoprotein in vaccinia virus morphogenesis: construction and characterization of a tetracycline-inducible recombinant. J Virol 74(8):3682–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maruri-Avidal L, Weisberg AS, Bisht H, Moss B (2013) Analysis of viral membranes formed in cells infected by a vaccinia virus L2-deletion mutant suggests their origin from the endoplasmic reticulum. J Virol 87(3):1861–1871. https://doi.org/10.1128/JVI.02779-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meng X, Wu X, Yan B, Deng J, Xiang Y (2013) Analysis of the role of vaccinia virus H7 in virion membrane biogenesis with an H7-deletion mutant. J Virol 87(14):8247–8253. https://doi.org/10.1128/JVI.00845-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boyle KA, Greseth MD, Traktman P (2015) Genetic confirmation that the H5 protein is required for Vaccinia virus DNA replication. J Virol 89(12):6312–6327. https://doi.org/10.1128/JVI.00445-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Olson ATRA, Wang Z, Delhon G, Wiebe MS (2017) Deletion of the Vaccinia virus B1 kinase reveals essential functions of this enzyme complemented partly by the homologous cellular kinase VRK2. J Virol 91(15). https://doi.org/10.1128/JVI.00635-17

  37. Kolli S, Meng X, Wu X, Shengjuler D, Cameron CE, Xiang Y, Deng J (2015) Structure-function analysis of vaccinia virus H7 protein reveals a novel phosphoinositide binding fold essential for poxvirus replication. J Virol 89(4):2209–2219. https://doi.org/10.1128/JVI.03073-14

    Article  CAS  PubMed  Google Scholar 

  38. D’Costa SM, Bainbridge TW, Kato SE, Prins C, Kelley K, Condit RC (2010) Vaccinia H5 is a multifunctional protein involved in viral DNA replication, postreplicative gene transcription, and virion morphogenesis. Virology 401(1):49–60. https://doi.org/10.1016/j.virol.2010.01.020

    Article  CAS  PubMed  Google Scholar 

  39. Moss B (1991) Vaccinia virus: a tool for research and vaccine development. Science 252(5013):1662–1667

    Article  CAS  PubMed  Google Scholar 

  40. Rempel RE, Anderson MK, Evans E, Traktman P (1990) Temperature-sensitive vaccinia virus mutants identify a gene with an essential role in viral replication. J Virol 64(2):574–583

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Greseth MD, Boyle KA, Bluma MS, Unger B, Wiebe MS, Soares-Martins JA, Wickramasekera NT, Wahlberg J, Traktman P (2012) Molecular genetic and biochemical characterization of the vaccinia virus I3 protein, the replicative single-stranded DNA binding protein. J Virol 86(11):6197–6209. https://doi.org/10.1128/JVI.00206-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Some of the work described herein was supported by grants from the NIH to P.T. (R01 AI21758 and R01 AI107123). We appreciate the helpful comments of members of the Traktman lab. We acknowledge the many members of the poxvirus field whose laboratories have contributed to the development of tools for the genetic analysis of poxvirus research, especially Richard Condit, Bernard Moss, and Geoffrey Smith. We also apologize to the many scientists whose important work was not cited here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Traktman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ibrahim, N., Traktman, P. (2019). Assessing the Structure and Function of Vaccinia Virus Gene Products by Transient Complementation. In: Mercer, J. (eds) Vaccinia Virus. Methods in Molecular Biology, vol 2023. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9593-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9593-6_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9592-9

  • Online ISBN: 978-1-4939-9593-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics