Skip to main content

Super-resolution Microscopy of Vaccinia Virus Particles

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2023))

Abstract

Super-resolution microscopy enables the study of vaccinia architecture at subviral resolution with molecular specificity. Here, we outline how to use structured illumination microscopy (SIM) and stochastic optical reconstruction microscopy (STORM) to detect fluorescently tagged or immunolabeled viral proteins on purified virions. Tens to hundreds of individual virions can be imaged in a single field of view providing data for single-particle averaging or quantitative analysis of viral protein spatial organization.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kausche GA, Pfankuch E, Ruska H (1939) Die Sichtbarmachung von pflanzlichem Virus im Übermikroskop. Naturwissenschaften 27:292–299

    Article  Google Scholar 

  2. Green RH, Anderson TF, Smadel JE (1942) Morphological structure of the virus of vaccinia. J Exp Med 75:651–656

    Article  CAS  Google Scholar 

  3. Dales S (1963) The uptake and development of vaccinia virus in strain L cells followed with labeled viral deoxyribonucleic acid. J Cell Biol 18:51–72

    Article  CAS  Google Scholar 

  4. Cyrklaff M, Risco C, Fernández JJ et al (2005) Cryo-electron tomography of vaccinia virus. Proc Natl Acad Sci U S A 102:2772–2777

    Article  CAS  Google Scholar 

  5. Grünewald K, Cyrklaff M (2006) Structure of complex viruses and virus-infected cells by electron cryo tomography. Curr Opin Microbiol 9:437–442

    Article  Google Scholar 

  6. Schmidt FI, Bleck CKE, Reh L et al (2013) Vaccinia virus entry is followed by core activation and proteasome-mediated release of the Immunomodulatory effector VH1 from lateral bodies. Cell Rep 4:464–476

    Article  CAS  Google Scholar 

  7. Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    Article  CAS  Google Scholar 

  8. Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  9. Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol 25:730–748

    Article  CAS  Google Scholar 

  10. Gray RDM, Beerli C, Pereira PM et al (2016) VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy. Sci Rep 6:29132

    Article  CAS  Google Scholar 

  11. Horsington J, Turnbull L, Whitchurch CB, Newsome TP (2012) Sub-viral imaging of vaccinia virus using super-resolution microscopy. J Virol Methods 186:132–136

    Article  CAS  Google Scholar 

  12. Culley S, Albrecht D, Jacobs C et al (2018) Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15(4):263–266

    Article  CAS  Google Scholar 

  13. Horsington J, Lynn H, Turnbull L et al (2013) A36-dependent actin filament nucleation promotes release of vaccinia virus. PLoS Pathog 9:e1003239

    Article  CAS  Google Scholar 

  14. Sakin V, Paci G, Lemke EA, Müller B (2016) Labeling of virus components for advanced, quantitative imaging analyses. FEBS Lett 590:1896–1914

    Article  CAS  Google Scholar 

  15. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796

    Article  CAS  Google Scholar 

  16. Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176

    Article  CAS  Google Scholar 

  17. Marzook NB, Procter DJ, Lynn H, et al (2014) Methodology for the efficient generation of fluorescently tagged vaccinia virus proteins. J Vis Exp e51151. https://doi.org/10.3791/51151

  18. Henriques R, Griffiths C, Rego EH, Mhlanga MM (2011) PALM and STORM: unlocking live-cell super-resolution. Biopolymers 95:322–331

    Article  CAS  Google Scholar 

  19. Nahidiazar L, Agronskaia AV, Broertjes J et al (2016) Optimizing imaging conditions for demanding multi-color super resolution localization microscopy. PLoS One 11:1–18

    Article  Google Scholar 

  20. Olivier N, Keller D, Gönczy P, Manley S (2013) Resolution doubling in 3D-STORM imaging through improved buffers. PLoS One 8:1–9

    Google Scholar 

  21. Ovesný M, Křížek P, Borkovec J et al (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30:2389–2390

    Article  Google Scholar 

  22. Henriques R, Lelek M, Fornasiero EF et al (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7:339–340

    Article  CAS  Google Scholar 

  23. Levet F, Hosy E, Kechkar A et al (2015) SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data. Nat Methods 12:1065–1071

    Article  CAS  Google Scholar 

  24. Stiefel P, Schmidt FI, Dörig P et al (2012) Cooperative vaccinia infection demonstrated at the single-cell level using FluidFM. Nano Lett 12:4219–4227

    Article  CAS  Google Scholar 

  25. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

  26. Gray RDM, Mercer J, Henriques R (2017) Open-source single-particle analysis for super-resolution microscopy with VirusMapper. J Vis Exp e55471–e55471. https://doi.org/10.3791/55471

  27. Pereira PM, Almada P, Henriques R (2015) High-content 3D multicolor super-resolution localization microscopy. Methods Cell Biol 125:95–117

    Article  CAS  Google Scholar 

  28. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R.G. is funded by the Engineering and Physical Sciences Research Council (EP/M506448/1). D.A. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 750673.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Gray or David Albrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gray, R., Albrecht, D. (2019). Super-resolution Microscopy of Vaccinia Virus Particles. In: Mercer, J. (eds) Vaccinia Virus. Methods in Molecular Biology, vol 2023. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9593-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9593-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9592-9

  • Online ISBN: 978-1-4939-9593-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics