Skip to main content

Mapping Retinoic Acid-Dependant 5mC Derivatives in Mouse Embryonic Fibroblasts

  • Protocol
  • First Online:
Retinoid and Rexinoid Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2019))

Abstract

Methylase-assisted bisulfite sequencing (MAB-seq) is a derivatization technique to evaluate the presence of 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC) at base-pair resolution. Although MAB-seq was originally designed to study these metabolites under steady-state conditions, we have developed an alternative protocol to evaluate the dynamics of 5-fC/5-caC accumulation in response to agonists, such as all-trans retinoic acid (ATRA). In addition, this protocol utilizes a lower quantity of the M.SssI enzyme without compromising methylation efficiency and requires less bench time. Herein, we describe the use of MAB-seq assay to evaluate the generation of 5-fC/5-caC in response to ATRA in mouse embryonic fibroblasts, using the hypermethylated in cancer 1 (Hic1) locus as a model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156:45–68

    Article  CAS  Google Scholar 

  2. Zhu J-K (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  Google Scholar 

  3. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    Article  CAS  Google Scholar 

  4. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534

    Article  CAS  Google Scholar 

  5. Piccolo FM, Fisher AG (2014) Getting rid of DNA methylation. Trends Cell Biol 24:136–143

    Article  CAS  Google Scholar 

  6. He Y-F, Li B-Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L et al (2010) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:742–745

    Google Scholar 

  7. Hashimoto H, Zhang X, Cheng X (2013) Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant. J Mol Biol 425:971–976

    Article  CAS  Google Scholar 

  8. Tang X-H, Gudas LJ (2011) Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol Mech Dis 6:345–364

    Article  CAS  Google Scholar 

  9. Léger H, Smet-Nocca C, Attmane-Elakeb A, Morley-Fletcher S, Benecke AG, Eilebrecht S (2014) A TDG/CBP/RARα ternary complex mediates the retinoic acid-dependent expression of DNA methylation-sensitive genes. Genomics Proteomics Bioinformatics 12:8–18

    Article  Google Scholar 

  10. Hassan HM, Kolendowski B, Isovic M, Bose K, Dranse HJ, Sampaio AV, Underhill TM, Torchia J (2017) Regulation of active DNA demethylation through RAR-mediated recruitment of a TET/TDG complex. Cell Rep 19:1685–1697

    Article  CAS  Google Scholar 

  11. Le May N, Mota-Fernandes D, Vélez-Cruz R, Iltis I, Biard D, Egly JM (2010) NER factors are recruited to active promoters and facilitate chromatin modification for transcription in the absence of exogenous genotoxic attack. Mol Cell 38:54–66

    Article  Google Scholar 

  12. Chen WY, Zeng X, Carter MG, Morrell CN, Chiu Yen R-W, Esteller M, Watkins DN, Herman JG, Mankowski JL, Baylin SB (2003) Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet 33:197–202

    Article  CAS  Google Scholar 

  13. Um S, Harbers M, Benecke A, Pierrat B, Losson R, Chambon P (1998) Retinoic acid receptors interact physically and functionally with the T:G mismatch-specific thymine-DNA glycosylase. J Biol Chem 273:20728–20736

    Article  CAS  Google Scholar 

  14. Thillainadesan G, Chitilian JM, Isovic M, Ablack JNG, Mymryk JS, Tini M, Torchia J (2012) TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol Cell 46:636–649

    Article  CAS  Google Scholar 

  15. Neri F, Incarnato D, Krepelova A, Rapelli S, Anselmi F, Parlato C, Medana C, Dal Bello F, Oliviero S (2015) Single-base resolution analysis of 5-formyl and 5-carboxyl cytosine reveals promoter DNA methylation dynamics. Cell Rep 10:674–683

    Article  CAS  Google Scholar 

  16. Wu H, Wu X, Zhang Y (2016) Base-resolution profiling of active DNA demethylation using MAB-seq and caMAB-seq. Nat Protoc 11:1081–1100

    Article  CAS  Google Scholar 

  17. Zheng J, Xiong D, Sun X, Wang J, Hao M, Ding T, Xiao G, Wang X, Mao Y, Fu Y et al (2012) Signification of hypermethylated in cancer 1 (HIC1) as tumor suppressor gene in tumor progression. Cancer Microenviron 5:285–293

    Article  CAS  Google Scholar 

  18. Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123:437–448

    Article  CAS  Google Scholar 

  19. Jenal M, Trinh E, Britschgi C, Britschgi A, Roh V, Vorburger S a, Tobler A, Leprince D, Fey MF, Helin K et al (2009) The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1. Mol Cancer Res 7:916–922

    Article  CAS  Google Scholar 

  20. Shen L, Wu H, Diep D, Yamaguchi S, D’Alessio AC, Fung H-L, Zhang K, Zhang Y (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153:692–706

    Article  CAS  Google Scholar 

  21. Lu X, Song C-X, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C (2013) Chemical modification-assisted bisulfite sequencing (CAB-Seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135:9315–9317

    Article  CAS  Google Scholar 

  22. Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H et al (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153:678–691

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Torchia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hassan, H.M., Underhill, T.M., Torchia, J. (2019). Mapping Retinoic Acid-Dependant 5mC Derivatives in Mouse Embryonic Fibroblasts. In: Ray, S. (eds) Retinoid and Rexinoid Signaling . Methods in Molecular Biology, vol 2019. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9585-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9585-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9584-4

  • Online ISBN: 978-1-4939-9585-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics