Skip to main content

Fluorescent Imaging and Microscopy for Dynamic Processes in Rats

  • Protocol
  • First Online:
Rat Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2018))

Abstract

The rat is a favored model organism to study physiological function in vivo. This is largely due to the fact that it has been used for decades and is often more comparable to corresponding human conditions (both normal and pathologic) than mice. Although the development of genetic manipulations in rats has been slower than in mice, recent advances of new genomic editing tools allow for the generation of targeted global and specific cell type mutations in different rat strains. The rat is an ideal model for advancing imaging techniques like intravital multi-photon microscopy or IVMPM. Multi-photon excitation microscopy can be applied to visualize real-time physiologic events in multiple organs including the kidney. This imaging modality can generate four-dimensional high resolution images that are inherently confocal due to the fact that the photon density needed to excite fluorescence only occurs at the objective focal plane, not above or below. Additionally, longer excitation wavelengths allow for deeper penetration into tissue, improved excitation, and are inherently less phototoxic than shorter excitation wavelengths. Applying imaging tools to study physiology in rats has become a valuable scientific technique due to the relatively simple surgical procedures, improved quality of reagents, and reproducibility of established assays. In this chapter, the authors provide an example of the application of fluorescent techniques to study cardio-renal functions in rat models. Use of experimental procedures described here, together with multiple available genetically modified animal models, provide new prospective for the further application of multi-photon microscopy in basic and translational research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn KW, Sandoval RM, Kelly KJ, Dagher PC, Tanner GA, Atkinson SJ et al (2002) Functional studies of the kidney of living animals using multicolor two-photon microscopy. Am J Phys Cell Phys 283(3):C905–C916. https://doi.org/10.1152/ajpcell.00159.2002

    Article  CAS  Google Scholar 

  2. Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385(6612):161–165. https://doi.org/10.1038/385161a0

    Article  CAS  PubMed  Google Scholar 

  3. Peti-Peterdi J, Morishima S, Bell PD, Okada Y (2002) Two-photon excitation fluorescence imaging of the living juxtaglomerular apparatus. Am J Physiol Ren Physiol 283(1):F197–F201. https://doi.org/10.1152/ajprenal.00356.2001

    Article  CAS  Google Scholar 

  4. Ferrell N, Sandoval RM, Bian A, Campos-Bilderback SB, Molitoris BA, Fissell WH (2015) Shear stress is normalized in glomerular capillaries following (5/6) nephrectomy. Am J Physiol Ren Physiol 308(6):F588–F593. https://doi.org/10.1152/ajprenal.00290.2014

    Article  CAS  Google Scholar 

  5. Kleinfeld D, Mitra PP, Helmchen F, Denk W (1998) Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc Natl Acad Sci U S A 95(26):15741–15746

    Article  CAS  Google Scholar 

  6. Schiessl IM, Bardehle S, Castrop H (2013) Superficial nephrons in BALB/c and C57BL/6 mice facilitate in vivo multiphoton microscopy of the kidney. PLoS One 8(1):e52499. https://doi.org/10.1371/journal.pone.0052499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chobanian AV (2009) Shattuck Lecture. The hypertension paradox--more uncontrolled disease despite improved therapy. N Engl J Med 361(9):878–887. https://doi.org/10.1056/NEJMsa0903829

    Article  CAS  PubMed  Google Scholar 

  8. Cowley AW Jr (1997) Genetic and nongenetic determinants of salt sensitivity and blood pressure. Am J Clin Nutr 65(2 Suppl):587S–593S

    Article  CAS  Google Scholar 

  9. Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Jacob HJ et al (2008) Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. Am J Physiol Ren Physiol 295(3):F837–F842. https://doi.org/10.1152/ajprenal.90341.2008

    Article  CAS  Google Scholar 

  10. Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, Brown D (2009) Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol 20(3):489–494. https://doi.org/10.1681/ASN.2008050503

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A (2015) Podocyte injury in diabetic nephropathy: implications of angiotensin II-dependent activation of TRPC channels. Sci Rep 5:17637. https://doi.org/10.1038/srep17637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Slaughter TN, Paige A, Spires D, Kojima N, Kyle PB, Garrett MR et al (2013) Characterization of the development of renal injury in Type-1 diabetic Dahl salt-sensitive rats. Am J Phys Regul Integr Comp Phys 305(7):R727–R734. https://doi.org/10.1152/ajpregu.00382.2012

    Article  CAS  Google Scholar 

  13. Endres BT, Sandoval RM, Rhodes GJ, Campos-Bilderback SB, Kamocka MM, McDermott-Roe C et al (2017) Intravital imaging of the kidney in a rat model of salt-sensitive hypertension. Am J Physiol Ren Physiol 313(2):F163–F173. https://doi.org/10.1152/ajprenal.00466.2016

    Article  CAS  Google Scholar 

  14. Rhodes GJ (2017) Surgical preparation of rats and mice for intravital microscopic imaging of abdominal organs. Methods 128:129–138. https://doi.org/10.1016/j.ymeth.2017.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sandoval RM, Molitoris BA (2013) Quantifying glomerular permeability of fluorescent macromolecules using 2-photon microscopy in Munich Wistar rats. J Vis Exp (74). https://doi.org/10.3791/50052

  16. Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D et al (2007) The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 71(6):504–513. https://doi.org/10.1038/sj.ki.5002041

    Article  CAS  PubMed  Google Scholar 

  17. Wagner MC, Campos-Bilderback SB, Chowdhury M, Flores B, Lai X, Myslinski J et al (2016) Proximal tubules have the capacity to regulate uptake of albumin. J Am Soc Nephrol 27(2):482–494. https://doi.org/10.1681/ASN.2014111107

    Article  CAS  PubMed  Google Scholar 

  18. Asgeirsson D, Venturoli D, Rippe B, Rippe C (2006) Increased glomerular permeability to negatively charged Ficoll relative to neutral Ficoll in rats. Am J Physiol Ren Physiol 291(5):F1083–F1089. https://doi.org/10.1152/ajprenal.00488.2005

    Article  CAS  Google Scholar 

  19. Tojo A, Endou H (1992) Intrarenal handling of proteins in rats using fractional micropuncture technique. Am J Phys 263(4 Pt 2):F601–F606. https://doi.org/10.1152/ajprenal.1992.263.4.F601

    Article  CAS  Google Scholar 

  20. Sandoval RM, Wagner MC, Patel M, Campos-Bilderback SB, Rhodes GJ, Wang E et al (2012) Multiple factors influence glomerular albumin permeability in rats. J Am Soc Nephrol 23(3):447–457. https://doi.org/10.1681/ASN.2011070666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamamoto T, Tada T, Brodsky SV, Tanaka H, Noiri E, Kajiya F et al (2002) Intravital videomicroscopy of peritubular capillaries in renal ischemia. Am J Physiol Ren Physiol 282(6):F1150–F1155. https://doi.org/10.1152/ajprenal.00310.2001

    Article  CAS  Google Scholar 

  22. Sharfuddin AA, Sandoval RM, Berg DT, McDougal GE, Campos SB, Phillips CL et al (2009) Soluble thrombomodulin protects ischemic kidneys. J Am Soc Nephrol 20(3):524–534. https://doi.org/10.1681/ASN.2008060593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. McCurley A, Alimperti S, Campos-Bilderback SB, Sandoval RM, Calvino JE, Reynolds TL et al (2017) Inhibition of alphavbeta5 integrin attenuates vascular permeability and protects against renal ischemia-reperfusion injury. J Am Soc Nephrol 28(6):1741–1752. https://doi.org/10.1681/ASN.2016020200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sandoval RM, Wang E, Molitoris BA (2014) Finding the bottom and using it: offsets and sensitivity in the detection of low intensity values in vivo with 2-photon microscopy. Dermatol Int 2(1):e23674. https://doi.org/10.4161/intv.23674

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant support from the National Institutes of Health (NIH) (DK091623 and DK079312), the Veterans Administration through a Merit Review award (to B.A.M.), and the American Heart Association 17SDG33660149 (to OP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Palygin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sandoval, R.M., Molitoris, B.A., Palygin, O. (2019). Fluorescent Imaging and Microscopy for Dynamic Processes in Rats. In: Hayman, G., Smith, J., Dwinell, M., Shimoyama, M. (eds) Rat Genomics. Methods in Molecular Biology, vol 2018. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9581-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9581-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9580-6

  • Online ISBN: 978-1-4939-9581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics