Skip to main content

Rat Models of Exercise for the Study of Complex Disease

  • Protocol
  • First Online:
Rat Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2018))

Abstract

Variation in exercise capacity is a translationally powerful indicator for overall health and disease. Here we review the basic methods used for development of theoretically based and hypothesis-driven rat models that divide for both exercise capacity and numerous complex disease risks This rat model system was made by selectively breeding genetically heterogeneous rat populations for low and high performance on a speed ramped treadmill running test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch LG, Britton SL (2001) Artificial selection for intrinsic aerobic endurance running capacity in rats. Physiol Genomics 5(1):45–52

    Article  CAS  Google Scholar 

  2. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801

    Article  Google Scholar 

  3. Koch LG, Britton SL (2018) Theoretical and biological evaluation of the link between low exercise capacity and disease risk. Cold Spring Harb Perspect Med 8(1):a029868. https://doi.org/10.1101/cshperspect.a029868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wisloff U, Najjar SM, Ellingsen O, Haram PM, Swoap S, Al-Share Q et al (2005) Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science 307(5708):418–420

    Article  CAS  Google Scholar 

  5. Chandrasekaran K, Muragundla A, Demarest TG, Choi J, Sagi AR, Najimi N et al (2017) mGluR2/3 activation of the SIRT1 axis preserves mitochondrial function in diabetic neuropathy. Ann Clin Transl Neurol 4(12):844–858

    Article  CAS  Google Scholar 

  6. Choi J, Chandrasekaran K, Demarest TG, Kristian T, Xu S, Vijaykumar K et al (2014) Brain diabetic neurodegeneration segregates with low intrinsic aerobic capacity. Ann Clin Transl Neurol 1(8):589–604

    Article  CAS  Google Scholar 

  7. Feng X, Uchida Y, Koch L, Britton S, Hu J, Lutrin D et al (2017) Exercise prevents enhanced postoperative neuroinflammation and cognitive decline and rectifies the gut icrobiome in a rat model of metabolic syndrome. Front Immunol 8:1768

    Article  Google Scholar 

  8. Thyfault JP, Rector RS, Uptergrove GM, Borengasser SJ, Morris EM, Wei Y et al (2009) Rats selectively bred for low aerobic capacity have reduced hepatic mitochondrial oxidative capacity and susceptibility to hepatic steatosis and injury. J Physiol 587(Pt 8):1805–1816

    Article  CAS  Google Scholar 

  9. Morris EM, McCoin CS, Allen JA, Gastecki ML, Koch LG, Britton SL et al (2017) Aerobic capacity mediates susceptibility for the transition from steatosis to steatohepatitis. J Physiol 595(14):4909–4926

    Article  CAS  Google Scholar 

  10. Thompson HJ, Jones LW, Koch LG, Britton SL, Neil ES, McGinley JN (2017) Inherent aerobic capacity-dependent differences in breast carcinogenesis. Carcinogenesis 38(9):920–928

    Article  CAS  Google Scholar 

  11. Park SJ, Gavrilova O, Brown AL, Soto JE, Bremner S, Kim J et al (2017) DNA-PK promotes the mitochondrial, metabolic, and physical decline that occurs during aging. Cell Metab 26(2):447

    Article  CAS  Google Scholar 

  12. Koch LG, Kemi OJ, Qi N, Leng SX, Bijma P, Gilligan LJ et al (2011) Intrinsic aerobic capacity sets a divide for aging and longevity. Circ Res 109(10):1162–1172

    Article  CAS  Google Scholar 

  13. Solberg Woods LC, Stelloh C, Regner KR, Schwabe T, Eisenhauer J, Garrett MR (2010) Heterogeneous stock rats: a new model to study the genetics of renal phenotypes. Am J Physiol Renal Physiol 298(6):F1484–F1491

    Article  Google Scholar 

  14. Hansen C, Spuhler K (1984) Development of the National Institutes of Health genetically heterogeneous rat stock. Alcohol Clin Exp Res 8(5):477–479

    Article  CAS  Google Scholar 

  15. Ren YY, Overmyer KA, Qi NR, Treutelaar MK, Heckenkamp L, Kalahar M et al (2013) Genetic analysis of a rat model of aerobic capacity and metabolic fitness. PLoS One 8(10):e77588

    Article  CAS  Google Scholar 

  16. Overmyer KA, Evans CR, Qi NR, Minogue CE, Carson JJ, Chermside-Scabbo CJ et al (2015) Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation. Cell Metab 21(3):468–478

    Article  CAS  Google Scholar 

  17. Bouchard C, Rankinen T, Chagnon YC, Rice T, Pérusse L, Gagnon J et al (2000) Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE family study. J Appl Physiol 88(2):551–559

    Article  CAS  Google Scholar 

  18. Koch LG, Pollott GE, Britton SL (2013) Selectively bred rat model system for low and high response to exercise training. Physiol Genomics 45(14):606–614

    Article  Google Scholar 

Download references

Acknowledgments

Development of the LCR-HCR rat model system was supported by NIH grant P40 OD012098A from the Office of Research Infrastructure Programs to L.G.K. and S.L.B. Contact L.G.K. (Lauren.Koch2@UToledo.Edu) or S.L.B. (brittons@umich.edu) for information on the LCR and HCR rats: these rat models are maintained as an international collaborative animal resource at The University of Toledo, Toledo, OH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Gerard Koch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koch, L.G., Britton, S.L. (2019). Rat Models of Exercise for the Study of Complex Disease. In: Hayman, G., Smith, J., Dwinell, M., Shimoyama, M. (eds) Rat Genomics. Methods in Molecular Biology, vol 2018. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9581-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9581-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9580-6

  • Online ISBN: 978-1-4939-9581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics