Skip to main content

Statistical and Mathematical Modeling of Spatiotemporal Dynamics of Stem Cells

  • Protocol
  • First Online:
Stem Cell Mobilization

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2017))

Abstract

Statistical and mathematical modeling are crucial to describe, interpret, compare, and predict the behavior of complex biological systems including the organization of hematopoietic stem and progenitor cells in the bone marrow environment. The current prominence of high-resolution and live-cell imaging data provides an unprecedented opportunity to study the spatiotemporal dynamics of these cells within their stem cell niche and learn more about aberrant, but also unperturbed, normal hematopoiesis. However, this requires careful quantitative statistical analysis of the spatial and temporal behavior of cells and the interaction with their microenvironment. Moreover, such quantification is a prerequisite for the construction of hypothesis-driven mathematical models that can provide mechanistic explanations by generating spatiotemporal dynamics that can be directly compared to experimental observations. Here, we provide a brief overview of statistical methods in analyzing spatial distribution of cells, cell motility, cell shapes, and cellular genealogies. We also describe cell-based modeling formalisms that allow researchers to simulate emergent behavior in a multicellular system based on a set of hypothesized mechanisms. Together, these methods provide a quantitative workflow for the analytic and synthetic study of the spatiotemporal behavior of hematopoietic stem and progenitor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krause DS, Scadden DT (2015) A hostel for the hostile: the bone marrow niche in hematologic neoplasms. Haematologica 100(11):1376–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krinner A, Roeder I (2014) Quantification and modeling of stem cell–niche interaction. In: A systems biology approach to blood. Springer, pp 11–36

    Google Scholar 

  3. Nombela-Arrieta C, Manz MG (2017) Quantification and three-dimensional microanatomical organization of the bone marrow. Blood Adv 1(6):407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Acar M, Kocherlakota KS, Murphy MM, Peyer JG, Oguro H, Inra CN, Jaiyeola C, Zhao Z, Luby-Phelps K, Morrison SJ (2015) Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526(7571):126–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Etzrodt M, Endele M, Schroeder T (2014) Quantitative single-cell approaches to stem cell research. Cell Stem Cell 15(5):546–558

    Article  CAS  PubMed  Google Scholar 

  6. Schroeder T (2011) Long-term single-cell imaging of mammalian stem cells. Nat Methods 8(4s):S30

    Article  CAS  PubMed  Google Scholar 

  7. Skylaki S, Hilsenbeck O, Schroeder T (2016) Challenges in long-term imaging and quantification of single-cell dynamics. Nat Biotechnol 34(11):1137–1144

    Article  CAS  PubMed  Google Scholar 

  8. Foster K, Lassailly F, Anjos-Afonso F, Currie E, Rouault-Pierre K, Bonnet D (2015) Different motile behaviors of human hematopoietic stem versus progenitor cells at the osteoblastic niche. Stem Cell Rep 5(5):690–701

    Article  CAS  Google Scholar 

  9. Kim S, Lin L, Brown GA, Hosaka K, Scott EW (2017) Extended time-lapse in vivo imaging of tibia bone marrow to visualize dynamic hematopoietic stem cell engraftment. Leukemia 31(7):1582–1592

    Article  CAS  PubMed  Google Scholar 

  10. Lo Celso C, Lin CP, Scadden DT (2011) In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nat Protoc 6(1):1–14

    Article  PubMed  CAS  Google Scholar 

  11. MacLean AL, Smith MA, Liepe J, Sim A, Khorshed R, Rashidi NM, Scherf N, Krinner A, Roeder I, Lo Celso C (2017) Single Cell Phenotyping Reveals Heterogeneity Among Hematopoietic Stem Cells Following Infection. Stem Cells 35(11):2292–2304

    Article  CAS  PubMed  Google Scholar 

  12. Hilsenbeck O, Schwarzfischer M, Skylaki S, Schauberger B, Hoppe PS, Loeffler D, Kokkaliaris KD, Hastreiter S, Skylaki E, Filipczyk A, Strasser M, Buggenthin F, Feigelman JS, Krumsiek J, van den Berg AJ, Endele M, Etzrodt M, Marr C, Theis FJ, Schroeder T (2016) Software tools for single-cell tracking and quantification of cellular and molecular properties. Nat Biotechnol 34(7):703–706

    Article  CAS  PubMed  Google Scholar 

  13. Hilsenbeck O, Schwarzfischer M, Loeffler D, Dimopoulos S, Hastreiter S, Marr C, Theis FJ, Schroeder T (2017) fastER: a user-friendly tool for ultrafast and robust cell segmentation in large-scale microscopy. Bioinformatics 33(13):2020–2028

    Article  CAS  PubMed  Google Scholar 

  14. Molnar C, Jermyn IH, Kato Z, Rahkama V, Östling P, Mikkonen P, Pietiäinen V, Horvath P (2016) Accurate morphology preserving segmentation of overlapping cells based on active contours. Sci Rep 6:32412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sommer C, Straehle C, Koethe U, Hamprecht FA (2011) Ilastik: interactive learning and segmentation toolkit. In: Biomedical imaging: from nano to macro, 2011 IEEE International Symposium on, 2011. IEEE, pp 230–233

    Google Scholar 

  16. Pelt DM, Sethian JA (2018) A mixed-scale dense convolutional neural network for image analysis. Proc Natl Acad Sci U S A 115(2):254–259

    Article  CAS  PubMed  Google Scholar 

  17. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, pp 234–241

    Google Scholar 

  18. Meijering E (2012) Cell segmentation: 50 years down the road [life sciences]. IEEE Signal Process Mag 29(5):140–145

    Article  Google Scholar 

  19. Kan A (2017) Machine learning applications in cell image analysis. Immunol Cell Biol 95(6):525–530

    Article  PubMed  Google Scholar 

  20. Caicedo JC, Cooper S, Heigwer F, Warchal S, Qiu P, Molnar C, Vasilevich AS, Barry JD, Bansal HS, Kraus O (2017) Data-analysis strategies for image-based cell profiling. Nat Methods 14(9):849–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  22. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Held M, Schmitz MH, Fischer B, Walter T, Neumann B, Olma MH, Peter M, Ellenberg J, Gerlich DW (2010) CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging. Nat Methods 7(9):747–754

    Article  CAS  PubMed  Google Scholar 

  24. Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90

    Article  CAS  PubMed  Google Scholar 

  25. Wiesmann V, Franz D, Held C, Münzenmayer C, Palmisano R, Wittenberg T (2015) Review of free software tools for image analysis of fluorescence cell micrographs. J Microsc 257(1):39–53

    Article  CAS  PubMed  Google Scholar 

  26. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97(8):2293–2299

    Article  CAS  PubMed  Google Scholar 

  27. Gomariz A, Helbling PM, Isringhausen S, Suessbier U, Becker A, Boss A, Nagasawa T, Paul G, Goksel O, Székely G, Stoma S (2018) Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy. Nature communications 9(1):2532.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13(2):255–266

    Article  Google Scholar 

  29. Baddeley A (1999) Spatial sampling and censoring. In: Barndorff-Nielsen O, Kendall W, van Lieshout H (eds) Stochastic geometry: likelihood and computation. Chapman and Hall, London, pp 37–78

    Google Scholar 

  30. Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. CRC Press, Boca Raton

    Book  Google Scholar 

  31. Cressie N (2015) Statistics for spatial data. Wiley, New York

    Google Scholar 

  32. Gelfand AE, Diggle P, Guttorp P, Fuentes M (2010) Handbook of spatial statistics. CRC Press, Boca Raton

    Book  Google Scholar 

  33. Tranquillo RT, Lauffenburger DA, Zigmond S (1988) A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations. J Cell Biol 106(2):303–309

    Article  CAS  PubMed  Google Scholar 

  34. Wu P-H, Giri A, Sun SX, Wirtz D (2014) Three-dimensional cell migration does not follow a random walk. Proc Natl Acad Sci 111(11):3949–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luzhanskey ID, MacMunn JP, Cohen JD, Barney LE, Jansen LE, Schwartz AD, Peyton S (2017) Anomalous diffusion as a descriptive model of cell migration. bioRxiv:236356

    Google Scholar 

  36. Gorelik R, Gautreau A (2014) Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc 9(8):1931–1943

    Article  CAS  PubMed  Google Scholar 

  37. Wu PH, Giri A, Wirtz D (2015) Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat Protoc 10(3):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dieterich P, Klages R, Preuss R, Schwab A (2008) Anomalous dynamics of cell migration. Proc Natl Acad Sci 105(2):459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Makarava N, Menz S, Theves M, Huisinga W, Beta C, Holschneider M (2014) Quantifying the degree of persistence in random amoeboid motion based on the Hurst exponent of fractional Brownian motion. Phys Rev E 90(4):042703

    Article  CAS  Google Scholar 

  40. Masuzzo P, Van Troys M, Ampe C, Martens L (2016) Taking aim at moving targets in computational cell migration. Trends Cell Biol 26(2):88–110

    Article  PubMed  Google Scholar 

  41. Sánchez-Corrales YE, Hartley M, van Rooij J, Marée AF, Grieneisen VA (2018) Morphometrics of complex cell shapes: lobe contribution elliptic Fourier analysis (LOCO-EFA). Development. pii: dev156778

    Google Scholar 

  42. Pincus Z, Theriot J (2007) Comparison of quantitative methods for cell-shape analysis. J Microsc 227(2):140–156

    Article  CAS  PubMed  Google Scholar 

  43. Driscoll MK, McCann C, Kopace R, Homan T, Fourkas JT, Parent C, Losert W (2012) Cell shape dynamics: from waves to migration. PLoS Comput Biol 8(3):e1002392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gordonov S, Hwang MK, Wells A, Gertler FB, Lauffenburger DA, Bathe M (2016) Time series modeling of live-cell shape dynamics for image-based phenotypic profiling. Integr Biol 8(1):73–90

    Article  CAS  Google Scholar 

  45. Glauche I, Lorenz R, Hasenclever D, Roeder I (2009) A novel view on stem cell development: analysing the shape of cellular genealogies. Cell Prolif 42(2):248–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bach E, Zerjatke T, Herklotz M, Scherf N, Niederwieser D, Roeder I, Pompe T, Cross M, Glauche I (2014) Elucidating functional heterogeneity in hematopoietic progenitor cells: a combined experimental and modeling approach. Exp Hematol 42(9):826–837 e821–817

    Article  CAS  PubMed  Google Scholar 

  47. Khakhutskyy V, Schwarzfischer M, Hubig N, Plant C, Marr C, Rieger MA, Schroeder T, Theis FJ (2014) Centroid clustering of cellular lineage trees. In: International conference on information technology in bio-and medical informatics. Springer, pp 15–29

    Google Scholar 

  48. Stadler T, Skylaki S, DK K, Schroeder T (2018) On the statistical analysis of single cell lineage trees. J Theor Biol 439:160–165

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marr C, Strasser M, Schwarzfischer M, Schroeder T, Theis FJ (2012) Multi-scale modeling of GMP differentiation based on single-cell genealogies. FEBS J 279(18):3488–3500

    Article  CAS  PubMed  Google Scholar 

  50. Nordon RE, Ko K-H, Odell R, Schroeder T (2011) Multi-type branching models to describe cell differentiation programs. J Theor Biol 277(1):7–18

    Article  PubMed  Google Scholar 

  51. Strasser MK, Feigelman J, Theis FJ, Marr C (2015) Inference of spatiotemporal effects on cellular state transitions from time-lapse microscopy. BMC Syst Biol 9(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  52. Feigelman J, Ganscha S, Hastreiter S, Schwarzfischer M, Filipczyk A, Schroeder T, Theis FJ, Marr C, Claassen M (2016) Analysis of cell lineage trees by exact Bayesian inference identifies negative autoregulation of Nanog in mouse embryonic stem cells. Cell Sys 3(5):480–490.e413

    Article  CAS  Google Scholar 

  53. d’Inverno M, Luck M, Luck MM (2004) Understanding agent systems. Springer, Berlin

    Book  Google Scholar 

  54. Krinner A, Roeder I, Loeffler M, Scholz M (2013) Merging concepts-coupling an agent-based model of hematopoietic stem cells with an ODE model of granulopoiesis. BMC Syst Biol 7(1):117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Roeder I, Horn M, Glauche I, Hochhaus A, Mueller MC, Loeffler M (2006) Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med 12(10):1181–1184

    Article  CAS  PubMed  Google Scholar 

  56. Deutsch A, Dormann S (2007) Cellular automaton modeling of biological pattern formation: characterization, applications, and analysis. Springer, Berlin

    Google Scholar 

  57. Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69(13):2013–2016

    Article  CAS  PubMed  Google Scholar 

  58. Drasdo D (2007) Center-based single-cell models: an approach to multi-cellular organization based on a conceptual analogy to colloidal particles. In: Single-cell-based models in biology and medicine. Springer, pp 171–196

    Google Scholar 

  59. Alt S, Ganguly P, Salbreux G (2017) Vertex models: from cell mechanics to tissue morphogenesis. Phil Trans R Soc B 372(1720):20150520

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fletcher AG, Osterfield M, Baker RE, Shvartsman SY (2014) Vertex models of epithelial morphogenesis. Biophys J 106(11):2291–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sandersius SA, Newman TJ (2008) Modeling cell rheology with the subcellular element model. Phys Biol 5(1):015002

    Article  PubMed  CAS  Google Scholar 

  62. Osborne JM, Fletcher AG, Pitt-Francis JM, Maini PK, Gavaghan DJ (2017) Comparing individual-based approaches to modelling the self-organization of multicellular tissues. PLoS Comput Biol 13(2):e1005387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Magno R, Grieneisen VA, Marée AF (2015) The biophysical nature of cells: potential cell behaviours revealed by analytical and computational studies of cell surface mechanics. BMC Biophys 8(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Van Liedekerke P, Palm M, Jagiella N, Drasdo D (2015) Simulating tissue mechanics with agent-based models: concepts, perspectives and some novel results. Comput Part Mech 2(4):401–444

    Article  Google Scholar 

  65. Tanaka S (2015) Simulation frameworks for morphogenetic problems. Computation 3(2):197–221

    Article  Google Scholar 

  66. Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P (2018) PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol 14(2):e1005991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, Davit Y, Dunn S-J, Fletcher AG, Harvey DG (2013) Chaste: an open source C++ library for computational physiology and biology. PLoS Comput Biol 9(3):e1002970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Starruß J, de Back W, Brusch L, Deutsch A (2014) Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 30(9):1331–1332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The work presented in this paper is supported by Deutsche Krebshilfe (SyTASC grant number 70111969) and the German Ministry of Education and Research (BMBF) (HaematoOPT grant number 031A424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Roeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

de Back, W., Zerjatke, T., Roeder, I. (2019). Statistical and Mathematical Modeling of Spatiotemporal Dynamics of Stem Cells. In: Klein, G., Wuchter, P. (eds) Stem Cell Mobilization. Methods in Molecular Biology, vol 2017. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9574-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9574-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9573-8

  • Online ISBN: 978-1-4939-9574-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics