Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168
CAS
PubMed
CrossRef
Google Scholar
Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25(1):377–406
CAS
PubMed
CrossRef
Google Scholar
Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2(6):640–653
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka Daniel B, Reyes A, Wang Q, Weichenhan D, Lier A, von Paleske L, Renders S, Wünsche P, Zeisberger P, Brocks D, Gu L, Herrmann C, Haas S, Essers MAG, Brors B, Eils R, Huber W, Milsom MD, Plass C, Krijgsveld J, Trumpp A (2014) Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15(4):507–522
CAS
PubMed
CrossRef
Google Scholar
Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lió P, MacDonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129
CAS
PubMed
CrossRef
Google Scholar
van der Wath RC, Wilson A, Laurenti E, Trumpp A, Liò P (2009) Estimating dormant and active hematopoietic stem cell kinetics through extensive modeling of bromodeoxyuridine label-retaining cell dynamics. PLoS One 4(9):e6972
PubMed
PubMed Central
CrossRef
Google Scholar
Qiu J, Papatsenko D, Niu X, Schaniel C, Moore K (2014) Divisional history and hematopoietic stem cell function during homeostasis. Stem Cell Reports 2(4):473–490
PubMed
PubMed Central
CrossRef
Google Scholar
Bernitz JM, Kim HS, MacArthur B, Sieburg H, Moore K (2016) Hematopoietic stem cells count and remember self-renewal divisions. Cell 167(5):1296–1309.e1210
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Cantor AB, Orkin SH (2001) Hematopoietic development: a balancing act. Curr Opin Genet Dev 11(5):513–519
CAS
PubMed
CrossRef
Google Scholar
Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T, Weissman IL, Akashi K (2002) Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 3(1):137–147
CAS
PubMed
CrossRef
Google Scholar
Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge O-J, Thoren LAM, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SEW (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121(2):295–306
CAS
PubMed
CrossRef
Google Scholar
Forsberg EC, Serwold T, Kogan S, Weissman IL, Passegué E (2006) New evidence supporting megakaryocyte-erythrocyte potential of Flk2/Flt3+ multipotent hematopoietic progenitors. Cell 126(2):415–426
CAS
PubMed
CrossRef
Google Scholar
Essers MAG, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A (2009) IFNα activates dormant haematopoietic stem cells in vivo. Nature 458:904–908
CAS
CrossRef
Google Scholar
Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA (2010) Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465:793–797
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG (2011) Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 208(2):273–284
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, Moehrle B, Brocks D, Bayindir I, Kaschutnig P, Muedder K, Klein C, Jauch A, Schroeder T, Geiger H, Dick TP, Holland-Letz T, Schmezer P, Lane SW, Rieger MA, Essers MAG, Williams DA, Trumpp A, Milsom MD (2015) Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520:549–552
PubMed
CrossRef
Google Scholar
Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybylla A, Schönberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A (2017) Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169(5):807–823.e19
CAS
PubMed
CrossRef
Google Scholar
Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC (2004) Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104(8):2263–2268
CAS
PubMed
CrossRef
Google Scholar
Lichtman MA, Rowe JM (2004) The relationship of patient age to the pathobiology of the clonal myeloid diseases. Semin Oncol 31(2):185–197
PubMed
CrossRef
Google Scholar
Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139
CAS
PubMed
CrossRef
Google Scholar
Miller JP, Allman D (2003) The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol 171(5):2326–2330
CAS
PubMed
CrossRef
Google Scholar
Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389
CAS
PubMed
CrossRef
Google Scholar
Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729
CAS
PubMed
CrossRef
Google Scholar
Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111(12):5553–5561
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Dykstra B, Olthof S, Schreuder J, Ritsema M, de Haan G (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208(13):2691–2703
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, Alvarez S, Diolaiti ME, Ugarte F, Forsberg EC, Le Beau MM, Stohr BA, Méndez J, Morrison CG, Passegué E (2014) Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512(7513):198–202
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Tuljapurkar SR, McGuire TR, Brusnahan SK, Jackson JD, Garvin KL, Kessinger MA, Lane JT, O’Kane BJ, Sharp JG (2011) Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging. J Anat 219(5):574–581
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ergen AV, Boles NC, Goodell MA (2012) Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119(11):2500–2509
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Harrison D (1980) Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55(1):77–81
CAS
PubMed
Google Scholar
Shen FW, Saga Y, Litman G, Freeman G, Tung JS, Cantor H, Boyse EA (1985) Cloning of Ly-5 cDNA. Proc Natl Acad Sci U S A 82(21):7360–7363
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yakura H, Shen FW, Bourcet E, Boyse EA (1983) On the function of Ly-5 in the regulation of antigen-driven B cell differentiation. Comparison and contrast with Lyb-2. J Exp Med 157(4):1077–1088
CAS
PubMed
CrossRef
Google Scholar
Spangrude G, Heimfeld S, Weissman I (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241(4861):58–62
CAS
PubMed
CrossRef
Google Scholar
Waterstrat A, Liang Y, Swiderski CF, Shelton BJ, Van Zant G (2010) Congenic interval of CD45/Ly-5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment. Blood 115(2):408–417
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mercier FE, Sykes DB, Scadden DT (2016) Single targeted exon mutation creates a true congenic mouse for competitive hematopoietic stem cell transplantation: the C57BL/6-CD45.1 (STEM) mouse. Stem Cell Reports 6(6):985–992
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Flurkey KCJ, Harrison DE (2007) The mouse in aging research. In: Fox JG et al (eds) The mouse in biomedical research, 2nd edn. American College Laboratory Animal Medicine, Elsevier, pp 637–672
CrossRef
Google Scholar
Eaves CJ (2015) Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125(17):2605–2613
CAS
PubMed
PubMed Central
CrossRef
Google Scholar