Skip to main content

Assessment of Young and Aged Hematopoietic Stem Cell Activity by Competitive Serial Transplantation Assays

Part of the Methods in Molecular Biology book series (MIMB,volume 2017)

Abstract

Healthy hematopoietic stem cells (HSCs) are capable to self-renew and reconstitute the complete hematopoietic system. Upon aging, there is an increased incidence of blood-related diseases. Age-related phenotypes have been widely studied by bone marrow transplantation experiments, where reconstitution of the transplanted cells is a direct measure of HSC activity. In this protocol we describe a competitive bone marrow transplantation assay to functionally test young and old HSCs.

Key words

  • Hematopoietic stem cells
  • Transplants
  • Young
  • Aged
  • Bone marrow
  • Competitive

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-9574-5_15
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-9574-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100(1):157–168

    CAS  PubMed  CrossRef  Google Scholar 

  2. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  3. He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25(1):377–406

    CAS  PubMed  CrossRef  Google Scholar 

  4. Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2(6):640–653

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  5. Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka Daniel B, Reyes A, Wang Q, Weichenhan D, Lier A, von Paleske L, Renders S, Wünsche P, Zeisberger P, Brocks D, Gu L, Herrmann C, Haas S, Essers MAG, Brors B, Eils R, Huber W, Milsom MD, Plass C, Krijgsveld J, Trumpp A (2014) Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15(4):507–522

    CAS  PubMed  CrossRef  Google Scholar 

  6. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lió P, MacDonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129

    CAS  PubMed  CrossRef  Google Scholar 

  7. van der Wath RC, Wilson A, Laurenti E, Trumpp A, Liò P (2009) Estimating dormant and active hematopoietic stem cell kinetics through extensive modeling of bromodeoxyuridine label-retaining cell dynamics. PLoS One 4(9):e6972

    PubMed  PubMed Central  CrossRef  Google Scholar 

  8. Qiu J, Papatsenko D, Niu X, Schaniel C, Moore K (2014) Divisional history and hematopoietic stem cell function during homeostasis. Stem Cell Reports 2(4):473–490

    PubMed  PubMed Central  CrossRef  Google Scholar 

  9. Bernitz JM, Kim HS, MacArthur B, Sieburg H, Moore K (2016) Hematopoietic stem cells count and remember self-renewal divisions. Cell 167(5):1296–1309.e1210

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  10. Cantor AB, Orkin SH (2001) Hematopoietic development: a balancing act. Curr Opin Genet Dev 11(5):513–519

    CAS  PubMed  CrossRef  Google Scholar 

  11. Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T, Weissman IL, Akashi K (2002) Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev Cell 3(1):137–147

    CAS  PubMed  CrossRef  Google Scholar 

  12. Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, Bryder D, Yang L, Borge O-J, Thoren LAM, Anderson K, Sitnicka E, Sasaki Y, Sigvardsson M, Jacobsen SEW (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121(2):295–306

    CAS  PubMed  CrossRef  Google Scholar 

  13. Forsberg EC, Serwold T, Kogan S, Weissman IL, Passegué E (2006) New evidence supporting megakaryocyte-erythrocyte potential of Flk2/Flt3+ multipotent hematopoietic progenitors. Cell 126(2):415–426

    CAS  PubMed  CrossRef  Google Scholar 

  14. Essers MAG, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A (2009) IFNα activates dormant haematopoietic stem cells in vivo. Nature 458:904–908

    CAS  CrossRef  Google Scholar 

  15. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA (2010) Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465:793–797

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  16. Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG (2011) Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J Exp Med 208(2):273–284

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  17. Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, Moehrle B, Brocks D, Bayindir I, Kaschutnig P, Muedder K, Klein C, Jauch A, Schroeder T, Geiger H, Dick TP, Holland-Letz T, Schmezer P, Lane SW, Rieger MA, Essers MAG, Williams DA, Trumpp A, Milsom MD (2015) Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520:549–552

    PubMed  CrossRef  Google Scholar 

  18. Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybylla A, Schönberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A (2017) Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy. Cell 169(5):807–823.e19

    CAS  PubMed  CrossRef  Google Scholar 

  19. Guralnik JM, Eisenstaedt RS, Ferrucci L, Klein HG, Woodman RC (2004) Prevalence of anemia in persons 65 years and older in the United States: evidence for a high rate of unexplained anemia. Blood 104(8):2263–2268

    CAS  PubMed  CrossRef  Google Scholar 

  20. Lichtman MA, Rowe JM (2004) The relationship of patient age to the pathobiology of the clonal myeloid diseases. Semin Oncol 31(2):185–197

    PubMed  CrossRef  Google Scholar 

  21. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139

    CAS  PubMed  CrossRef  Google Scholar 

  22. Miller JP, Allman D (2003) The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J Immunol 171(5):2326–2330

    CAS  PubMed  CrossRef  Google Scholar 

  23. Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102(26):9194–9199

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13:376–389

    CAS  PubMed  CrossRef  Google Scholar 

  25. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729

    CAS  PubMed  CrossRef  Google Scholar 

  26. Cho RH, Sieburg HB, Muller-Sieburg CE (2008) A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood 111(12):5553–5561

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Dykstra B, Olthof S, Schreuder J, Ritsema M, de Haan G (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208(13):2691–2703

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  28. Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM, Reynaud D, Alvarez S, Diolaiti ME, Ugarte F, Forsberg EC, Le Beau MM, Stohr BA, Méndez J, Morrison CG, Passegué E (2014) Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512(7513):198–202

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  29. Tuljapurkar SR, McGuire TR, Brusnahan SK, Jackson JD, Garvin KL, Kessinger MA, Lane JT, O’Kane BJ, Sharp JG (2011) Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging. J Anat 219(5):574–581

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  30. Ergen AV, Boles NC, Goodell MA (2012) Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood 119(11):2500–2509

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  31. Harrison D (1980) Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55(1):77–81

    CAS  PubMed  Google Scholar 

  32. Shen FW, Saga Y, Litman G, Freeman G, Tung JS, Cantor H, Boyse EA (1985) Cloning of Ly-5 cDNA. Proc Natl Acad Sci U S A 82(21):7360–7363

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  33. Yakura H, Shen FW, Bourcet E, Boyse EA (1983) On the function of Ly-5 in the regulation of antigen-driven B cell differentiation. Comparison and contrast with Lyb-2. J Exp Med 157(4):1077–1088

    CAS  PubMed  CrossRef  Google Scholar 

  34. Spangrude G, Heimfeld S, Weissman I (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241(4861):58–62

    CAS  PubMed  CrossRef  Google Scholar 

  35. Waterstrat A, Liang Y, Swiderski CF, Shelton BJ, Van Zant G (2010) Congenic interval of CD45/Ly-5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment. Blood 115(2):408–417

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Mercier FE, Sykes DB, Scadden DT (2016) Single targeted exon mutation creates a true congenic mouse for competitive hematopoietic stem cell transplantation: the C57BL/6-CD45.1 (STEM) mouse. Stem Cell Reports 6(6):985–992

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  37. Flurkey KCJ, Harrison DE (2007) The mouse in aging research. In: Fox JG et al (eds) The mouse in biomedical research, 2nd edn. American College Laboratory Animal Medicine, Elsevier, pp 637–672

    CrossRef  Google Scholar 

  38. Eaves CJ (2015) Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125(17):2605–2613

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Cabezas-Wallscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Y.W., Cabezas-Wallscheid, N. (2019). Assessment of Young and Aged Hematopoietic Stem Cell Activity by Competitive Serial Transplantation Assays. In: Klein, G., Wuchter, P. (eds) Stem Cell Mobilization. Methods in Molecular Biology, vol 2017. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9574-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9574-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9573-8

  • Online ISBN: 978-1-4939-9574-5

  • eBook Packages: Springer Protocols