Skip to main content

In Vitro Culture of Embryos from Horses

  • Protocol
  • First Online:
Comparative Embryo Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2006))

Abstract

Establishment of optimal methods for equine embryo culture has been slow when compared to some domestic species. In part, this delay was caused by the failure of standard in vitro fertilization techniques in horses. However, the development of intracytoplasmic sperm injection (ICSI) for the assisted fertilization of equine oocytes has resulted in a renewed interest in establishing optimal methods for embryo culture. Currently, ICSI-produced equine embryos are cultured using media designed for other species or other cell cultures and, typically, with the addition of serum. Although systems specifically for horse embryo culture still have not been established, ICSI-produced embryos are developmentally competent and capable of producing live offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Betteridge KJ, Eaglesome MD, Mitchell D, Flood PF, Beriault R (1982) Development of horse embryos up to twenty two days after ovulation: observations on fresh specimens. J Anat 135:191–209

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Freeman DA, Weber JA, Geary RT, Woods GL (1991) Time of embryo transport through the mare oviduct. Theriogenology 36:823–830

    Article  CAS  Google Scholar 

  3. Betteridge KJ (1989) The structure and function of the equine capsule in relation to embryo manipulation and transfer. Equine Vet J 21(S8):92–100

    Article  Google Scholar 

  4. Oriol JG, Betteridge KJ, Clarke AJ, Sharom FJ (1993) Mucin-like glycoproteins in the equine embryonic capsule. Mol Reprod Dev 34:255–265

    Article  CAS  Google Scholar 

  5. Tremoleda JL, Stout TAE, Lagutina I, Lazzari G, Bevers MM, Colenbrander B, Galli C (2003) Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation. Biol Reprod 69:189501906

    Google Scholar 

  6. Ginther OJ (2017) Systemic and intrafollicular components of follicle selection in mares. Domest Anim Endocrinol 59:116–133

    Article  CAS  Google Scholar 

  7. Carnevale EM (2016) Advances in collection, transport and maturation of equine oocytes for assisted reproductive techniques. Vet Clin North Am Equine Pract 32:379–399

    Article  Google Scholar 

  8. Foss R, Ortis H, Hinrichs K (2013) Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse. Equine Vet J 45(Suppl 45):39–43

    Article  Google Scholar 

  9. Hinrichs K (2010) In vitro production of equine embryos: state of the art. Reprod Domest Anim 45(Suppl 2):3–8

    Article  Google Scholar 

  10. Young LE, Sinclair KD, Wilmut I (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3:155–163

    Article  CAS  Google Scholar 

  11. Choi YH, Roasa LM, Love CC, Varner DD, Brinsko SP, Hinrichs K (2004) Blastocyst formation rates in vivo and in vitro of in vitro-matured equine oocytes fertilized by intracytoplasmic sperm injection. Biol Reprod 70:1231–1238

    Article  CAS  Google Scholar 

  12. Colleoni S, Lagutina I, Lazzari G, Rodriguez-Martinez H, Galli C, Morrell JM (2011) New methods for selecting stallion spermatozoa for assisted reproduction. J Equine Vet Sci 31:536–541

    Article  Google Scholar 

  13. Herrera C, Revora M, Vivani L, Miragaya MH, Losinno L, Quintans C, Pasqualini RS (2008) Effect of high glucose concentrations during equine in vitro culture of equine embryos. Proceedings of the 7th international symposium on equine embryo transfer and technology. R&W Communications, Suffolk, pp 52–53

    Google Scholar 

  14. Leisinger CA, Markle ML, Paccamonti DL, Cramer E, Pinto CRF (2016) Production of equine embryos in vitro using conventional intracytoplasmic sperm injection and a complete human embryo culture system. J Equine Vet Sci 4:78

    Article  Google Scholar 

  15. Hollis AR, Boston RC, Corley KTT (2007) Blood glucose in horses with acute abdominal disease. J Vet Intern Med 21:1099–1103

    Article  CAS  Google Scholar 

  16. Lane M, O’Donovan MK, Squires EL, Seidel GE Jr, Gardner DK (2001) Assessment of metabolism of equine morulae and blastocysts. Mol Reprod Dev 59:33–37

    Article  CAS  Google Scholar 

  17. Hu K, Yu Y (2017) Metabolite availability as a window to view the early embryo microenvironment in vivo. Mol Reprod Dev 84:1027–2038. https://doi.org/10.1002/mrd.22868

    Article  CAS  PubMed  Google Scholar 

  18. Morbeck DE, Krisher RL, Herrick JR, Baumann NA, Matern D, Moyer T (2014) Composition of commercial media used for human embryo culture. Fertil Steril 102:759–766

    Article  CAS  Google Scholar 

  19. Morbeck DE, Bauman NA, Oglesbee D (2017) Composition of single-step media used for human embryo culture. Fertil Steril 107:1055–1060

    Article  Google Scholar 

  20. Azuma T, Choi YH, Hochi S, Oguri N (1995) Effect of glucose in the culture medium on development of horse oocytes matured and microfertilized in vitro. Reprod Fertil Dev 7:1067–1071

    Article  CAS  Google Scholar 

  21. Choi YH, Ross P, Valez IC, Macias-Garcia B, Riera FL (2015) Cell linage allocation in equine blastocysts produced in vitro under varying glucose conditions. Reproduction 150:31–41

    Article  CAS  Google Scholar 

  22. Choi YH, Gibbons JR, Canesin HS, Hinrichs K (2016) Effect of medium variants (zinc supplementation during oocyte maturation, perifertilization pH, and embryo culture protein source) on equine embryo development after intracytoplasmic sperm injection. Theriogenology 86:1782–1788

    Article  CAS  Google Scholar 

  23. Rader K, Choi YH, Hinrichs K (2016) Intracytoplasmic sperm injection, embryo culture, and transfer of in vitro-produced blastocysts. Vet Clin Equine 32:401–413

    Article  Google Scholar 

  24. Maserati M, Mutto A (2016) In vitro production of equine embryos and cloning: today’s status. J Equine Vet Sci 41:42–50

    Article  Google Scholar 

  25. Herrera C, Jeannerat E, Wyck S, Bittner L, Van den Bergh M, Janett F, Burger D, Bollwein H (2016) Successful in vitro production of mammalian embryos: a strict quality management approach. J Equine Vet Sci 41:74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine M. Carnevale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Carnevale, E.M., Maclellan, L.J., Stokes, J.A.E. (2019). In Vitro Culture of Embryos from Horses. In: Herrick, J. (eds) Comparative Embryo Culture. Methods in Molecular Biology, vol 2006. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9566-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9566-0_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9565-3

  • Online ISBN: 978-1-4939-9566-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics