Skip to main content

Genotyping Citrus tristeza virus Isolates by Sequential Multiplex RT-PCR and Microarray Hybridization in a Lab-on-Chip Device

  • Protocol
  • First Online:
Citrus Tristeza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2015))

Abstract

Citrus tristeza virus (CTV) is the largest known plant RNA virus (ca. 20 Kb), with a plethora of isolates conventionally categorized into six main genotypic groups (T36, VT, T3, RB, T68, T30). Each group includes many isolates with different phenotype profiles. Several techniques and protocols, mostly based on RT-PCR analysis of different regions of specific genes, have been developed for managing the diseases caused by CTV. However, more accurate genomic information would help to plan a correct strategy. This chapter describes a pilot protocol based on a sequential multiplex RT-PCR reaction and microarray hybridization in a miniaturized silicon lab-on-chip (LoC) device. The system comprises a set of 12 primers and 44 probes (× 2 replicates), designed on variable genomic regions of 6 genes: 5′UTR, ORF1a, ORF1b (RdRp), p33, p20, and p23. The system can rapidly analyze any genotype diversity associated with field isolates and distinguish the endemic from the non-endemic isolates. The identification of CTV strains is based on a number of probe hybridizations, which varies according to the genotypes present in the isolates and the differences among the genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreno P, Ambrós S, Albiach-Martí MR et al (2008) Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9:251–268

    Article  CAS  Google Scholar 

  2. Bar-Joseph M, Dawson WO (2008) Citrus tristeza virus. In: Mahy BWJ, van Regenmortel MHV (eds) Encyclopedia of virology, 3rd edn, Evolutionary biology of viruses, vol 1. Elsevier Ltd, Amsterdam, pp 161–184

    Google Scholar 

  3. Dawson WO (2010) Molecular genetics of Citrus tristeza virus. In: Karasev AV, Hilf ME (eds) Citrus tristeza virus complex and tristeza disease. St. Paul American Phytopathological Society, St. Paul, MN, pp 53–72

    Google Scholar 

  4. Karasev AV, Boyko VP, Gowda S et al (1995) Complete sequence of the Citrus tristeza virus RNA genome. Virology 208:511–520

    Article  CAS  Google Scholar 

  5. Lu R, Folimonov A, Shintaku M et al (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proc Natl Acad Sci USA 101:15742–15747

    Article  CAS  Google Scholar 

  6. Satyanarayana T, Gowda S, Mawassi M et al (2000) Closterovirus encoded HSP70 homolog and p61 in addition to both coat proteins function in efficient virion assembly. Virology 278:253–265

    Article  CAS  Google Scholar 

  7. Tatineni S, Robertson CJ, Garnsey SM et al (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc Natl Acad Sci USA 108:17366–17371

    Article  CAS  Google Scholar 

  8. Harper SJ (2013) Citrus tristeza virus: evolution of complex and varied genotypic groups. Front Microbiol 4:1–18

    Google Scholar 

  9. Rosner A, Bar-Joseph M (1984) Diversity of Citrus tristeza virus strains indicated by hybridization with cloned cDNA sequences. Virology 39:89–93

    Google Scholar 

  10. Gillings M, Broadbent P, Indsto J et al (1993) Characterization of isolates and strains of Citrus tristeza closterovirus using restriction analysis of the coat protein gene amplified by the polymerase chain reaction. J Virol Methods 44:305–317

    Article  CAS  Google Scholar 

  11. Licciardello G, Raspagliesi D, Bar-Joseph M et al (2012) Characterization of isolates of Citrus tristeza virus by sequential analyses of enzyme immunoassays and capillary electrophoresis-single-strand conformation polymorphisms. J Virol Methods 181:139–147

    Article  CAS  Google Scholar 

  12. Hilf ME, Mavrodieva VA, Garnsey SM (2005) Genetic marker analysis of a global collection of isolates of Citrus tristeza virus: characterization and distribution of CTV genotypes and association with symptoms. Phytopathology 95:909–917

    Article  CAS  Google Scholar 

  13. Roy A, Ananthakrishnan G, Hartung JS et al (2010) Development and application of a multiplex reverse-transcription polymerase chain reaction assay for screening a global collection of Citrus tristeza virus isolates. Phytopathology 100:1077–1088

    Article  CAS  Google Scholar 

  14. Ruiz-Ruiz S, Moreno P, Guerri J et al (2009) Discrimination between mild and severe Citrus tristeza virus isolates with a rapid and highly specific real-time reverse transcription-polymerase chain reaction method using TaqMan LNA probes. Phytopathology 99:307–315

    Article  CAS  Google Scholar 

  15. Yokomi RK, Saponari M, Sieburth PJ (2010) Rapid differentiation and identification of potential severe strains of Citrus tristeza virus by real-time reverse transcription-polymerase chain reaction assays. Phytopathology 100:319–327

    Article  CAS  Google Scholar 

  16. Weng Z, Barthelson R, Gowda S et al (2007) Persistent infection and promiscuous recombination of multiple genotypes of an RNA virus within a single host generate extensive diversity. PLoS One 2(9):e917. https://doi.org/10.1371/journal.pone.0000917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruiz-Ruiz S, Navarro B, Gisel A et al (2011) Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 3′-terminal region of the genomic RNA and affects the host small RNA profile. Plant Mol Biol 75:607–619

    Article  CAS  Google Scholar 

  18. Licciardello G, Scuderi G, Ferraro R et al (2015) Deep sequencing and analysis of small-RNAs in sweet orange grafted on sour orange infected with two Citrus tristeza virus isolates prevalent in Sicily. Arch Virol 160:2583–2589

    Article  CAS  Google Scholar 

  19. Levy A, El-Mochtar C, Wang C et al (2018) A new toolset for protein expression and subcellular localization studies in citrus and its application to Citrus tristeza virus proteins. Plant Methods 14:2. https://doi.org/10.1186/s13007-017-0270-7

  20. Templier V, Livache T, Boisset S et al (2011) Biochips for direct detection and identification of bacteria in blood culture-like conditions. Sci Rep 7:9457

    Article  Google Scholar 

  21. Primiceri E, Chiriacò MS, de Feo F et al (2016) A multipurpose biochip for food pathogen detection. Anal Methods 8:3055–3060

    Article  CAS  Google Scholar 

  22. Julich S, Riedel M, Kielpinski M et al (2011) Development of a lab-on-a-chip device for diagnosis of plant pathogens. Biosens Bioelectron 26:4070–4075

    Article  CAS  Google Scholar 

  23. Chiriacò MS, Luvisi A, Primiceri E et al (2018) Development of a lab-on-a-chip method for rapid assay of Xylella fastidiosa subsp. pauca strain CoDiRO. Sci Rep 8:7376

    Google Scholar 

  24. Scuderi G, Lombardo A, Raspagliesi D et al (2016) Development and evaluation of a novel probe microarray for genotyping Citrus tristeza virus using an integrated lab-on-chip device. J Plant Pathol 98:25–34

    Google Scholar 

  25. Teo J, Di Pietro P, San Biagio F et al (2011) VereFluTM: an integrated multiplex RT-PCR and microarray assay for rapid detection and identification of human influenza A and B viruses using lab-on-chip technology. Arch Virol 156:1371–1378

    Article  CAS  Google Scholar 

  26. Conoci S, Di Pietro P, Petralia S et al (2006) Fast and efficient nucleic acid testing by ST’s In-Check™ lab-on-chip platform. NSTI-Nanotech 2:562–565

    CAS  Google Scholar 

  27. Petralia S, Alessi E, Amore MG et al (2012) In-Check system: a highly integrated silicon lab-on-chip for sample preparation, PCR amplification and microarray detection towards the molecular diagnostics point-of-care. In Proceedings of the 14th international meeting on chemical sensors, Nuremberg, Germany, 2012, pp 341–343

    Google Scholar 

Download references

Acknowledgments

This work was funded in part by the MIUR and EU through the National Program PON R&C 2007–2013, project “IT-Citrus genomics” (PON 01_01623), led by Science and Technology Park of Sicily, Catania (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Scuderi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Scuderi, G., Catara, A.F., Licciardello, G. (2019). Genotyping Citrus tristeza virus Isolates by Sequential Multiplex RT-PCR and Microarray Hybridization in a Lab-on-Chip Device. In: Catara, A., Bar-Joseph, M., Licciardello, G. (eds) Citrus Tristeza Virus. Methods in Molecular Biology, vol 2015. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9558-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9558-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9557-8

  • Online ISBN: 978-1-4939-9558-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics