Skip to main content

Trypsiligase-Catalyzed Peptide and Protein Ligation

  • Protocol
  • First Online:
Enzyme-Mediated Ligation Methods

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2012))

Abstract

Site-specific incorporation of nonproteinogenic functionalities into protein targets is an important tool in both basic and applied research and represents a major challenge to protein chemists. Chemical labeling methods often target multiple positions within a protein and therefore suffer from a lack of specificity. Enzymatic protein modification is an attractive alternative due to the inherent regioselectivity and stereoselectivity of enzymes. In this chapter we describe the application of the highly specific trypsin variant trypsiligase for the site-specific modification of virtual any target protein. We present two general routes of modification resulting in either N- or C-terminal functionalized protein products. Reactions rapidly proceed under mild conditions and result in homogeneously modified proteins bearing the artificial functionality exclusively at the desired position. We detail protocols for the expression and purification of trypsiligase as well as the synthesis of peptide (ester) substrates. In addition, we provide instructions for the bioconjugation reactions and for the qualitative and quantitative analysis of reaction progress and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rademann J (2004) Organic protein chemistry: drug discovery through the chemical modification of proteins. Angew Chem Int Ed 43(35):4554–4556. https://doi.org/10.1002/anie.200460075

    Article  CAS  Google Scholar 

  2. Stephanopoulos N, Francis MB (2011) Choosing an effective protein bioconjugation strategy. Nat Chem Biol 7:876. https://doi.org/10.1038/nchembio.720

    Article  CAS  Google Scholar 

  3. Schmidt M, Toplak A, Quaedflieg PJLM et al (2017) Enzyme-mediated ligation technologies for peptides and proteins. Curr Opin Chem Biol 38:1–7. https://doi.org/10.1016/j.cbpa.2017.01.017

    Article  CAS  Google Scholar 

  4. Zhang Y, Park K-Y, Suazo KF et al (2018) Recent progress in enzymatic protein labelling techniques and their applications. Chem Soc Rev 47:9106. https://doi.org/10.1039/C8CS00537K

    Article  CAS  Google Scholar 

  5. Rush JS, Bertozzi CR (2008) New aldehyde tag sequences identified by screening formylglycine generating enzymes in vitro and in vivo. J Am Chem Soc 130(37):12240–12241. https://doi.org/10.1021/ja804530w

    Article  CAS  Google Scholar 

  6. Radisky ES, Lee JM, Lu CJ et al (2006) Insights into the serine protease mechanism from atomic resolution structures of trypsin reaction intermediates. Proc Natl Acad Sci U S A 103(18):6835–6840. https://doi.org/10.1073/pnas.0601910103

    Article  CAS  Google Scholar 

  7. Hartley BS, Shotton DM, Paul DB (1971) 10 Pancreatic elastase. In: The enzymes, vol 3. Academic Press, London, pp 323–373. https://doi.org/10.1016/S1874-6047(08)60401-1

    Chapter  Google Scholar 

  8. Graf L, Craik CS, Patthy A et al (1987) Selective alteration of substrate specificity by replacement of aspartic acid-189 with lysine in the binding pocket of trypsin. Biochemistry 26(9):2616–2623. https://doi.org/10.1021/bi00383a031

    Article  CAS  Google Scholar 

  9. Kurth T, Grahn S, Thormann M et al (1998) Engineering the S1′ subsite of trypsin: design of a protease which cleaves between dibasic residues. Biochemistry 37(33):11434–11440. https://doi.org/10.1021/bi980842z

    Article  CAS  Google Scholar 

  10. Willett WS, Brinen LS, Fletterick RJ et al (1996) Delocalizing trypsin specificity with metal activation. Biochemistry 35(19):5992–5998. https://doi.org/10.1021/bi9530191

    Article  CAS  Google Scholar 

  11. Liebscher S, Schoepfel M, Aumueller T et al (2014) N-terminal protein modification by substrate-activated reverse proteolysis. Angew Chem Int Ed 53(11):3024–3028. https://doi.org/10.1002/anie.201307736

    Article  CAS  Google Scholar 

  12. Schumacher D, Helma J, Mann FA et al (2015) Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew Chem Int Ed 54(46):13787–13791. https://doi.org/10.1002/anie.201505456

    Article  CAS  Google Scholar 

  13. Rashidian M, Dozier JK, Distefano MD (2013) Enzymatic labeling of proteins: techniques and approaches. Bioconjug Chem 24(8):1277–1294. https://doi.org/10.1021/bc400102w

    Article  CAS  Google Scholar 

  14. Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  Google Scholar 

  15. Bordusa F (2002) Proteases in organic synthesis. Chem Rev 102(12):4817–4867. https://doi.org/10.1021/cr010164d

    Article  CAS  Google Scholar 

  16. Meyer C, Liebscher S, Bordusa F (2016) Selective coupling of click anchors to proteins via trypsiligase. Bioconjug Chem 27(1):47–53. https://doi.org/10.1021/acs.bioconjchem.5b00618

    Article  CAS  Google Scholar 

  17. Liebscher S, Kornberger P, Fink G et al (2014) Derivatization of antibody Fab fragments: a designer enzyme for native protein modification. ChemBioChem 15(8):1096–1100. https://doi.org/10.1002/cbic.201400059

    Article  CAS  Google Scholar 

  18. Higgins DR, Cregg JM (1998) Introduction to Pichia pastoris. Methods Mol Biol 103:1–15. https://doi.org/10.1385/0-89603-421-6:1

    Article  CAS  Google Scholar 

  19. Lal B, Gangopadhyay AK (1996) A practical synthesis of free and protected guanidino acids from amino acids. Tetrahedron Lett 37(14):2483–2486. https://doi.org/10.1016/0040-4039(96)00299-7

    Article  CAS  Google Scholar 

  20. Sekizaki H, Itoh K, Toyota E et al (1996) Synthesis and triptic hydrolysis of p-guanidinophenyl esters derived from amino acids and peptides. Chem Pharm Bull(Tokyo) 44(8):1577–1579. https://doi.org/10.1248/cpb.44.1577

    Article  CAS  Google Scholar 

  21. Wang H, Yang C, Wang L et al (2011) Self-assembled nanospheres as a novel delivery system for taxol: a molecular hydrogel with nanosphere morphology. Chem Commun 47(15):4439–4441. https://doi.org/10.1039/C1CC10506J

    Article  CAS  Google Scholar 

  22. Tokmina-Roszyk M, Tokmina-Roszyk D, Fields GB (2013) The synthesis and application of Fmoc-Lys(5-Fam) building blocks. Pept Sci 100(4):347–355. https://doi.org/10.1002/bip.22222

    Article  CAS  Google Scholar 

  23. Hoyle CE, Lowe AB, Bowman CN (2010) Thiol-click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev 39(4):1355–1387. https://doi.org/10.1039/B901979K

    Article  CAS  Google Scholar 

  24. Schmidt TG, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2(6):1528–1535. https://doi.org/10.1038/nprot.2007.209

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Bordusa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liebscher, S., Bordusa, F. (2019). Trypsiligase-Catalyzed Peptide and Protein Ligation. In: Nuijens, T., Schmidt, M. (eds) Enzyme-Mediated Ligation Methods. Methods in Molecular Biology, vol 2012. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9546-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9546-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9545-5

  • Online ISBN: 978-1-4939-9546-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics