Skip to main content

Discovering Yersinia–Host Interactions by Tissue Dual RNA-Seq

  • Protocol
  • First Online:
Pathogenic Yersinia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2010))

Abstract

A detailed knowledge about virulence-relevant genes, as well as where and when they are expressed during the course of an infection is required to obtain a comprehensive understanding of the complex host–pathogen interactions. The development of unbiased probe-independent RNA sequencing (RNA-seq) approaches has dramatically changed transcriptomics. It allows simultaneous monitoring of genome-wide, infection-linked transcriptional alterations of the host tissue and colonizing pathogens. Here, we provide a detailed protocol for the preparation and analysis of lymphatic tissue infected with the mainly extracellularly growing pathogen Yersinia pseudotuberculosis. This method can be used as a powerful tool for the discovery of Yersinia-induced host responses, colonization and persistence strategies of the pathogen, and underlying regulatory processes. Furthermore, we describe computational methods with which we analyzed obtained datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nuss AM, Beckstette M, Pimenova M, Schmühl C, Opitz W, Pisano F, Heroven A, Dersch P (2017) Tissue dual RNA-seq: a fast discovery path for infection-specific functions and riboregulators shaping host-pathogen transcriptomes. Proc Natl Acad Sci U S A 114(5):E791–E800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Avican K, Fahlgren A, Huss M, Heroven AK, Beckstette M, Dersch P, Fallman M (2015) Reprogramming of Yersinia from virulent to persistent mode revealed by complex in vivo RNA-seq analysis. PLoS Pathog 11(1):e1004600. https://doi.org/10.1371/journal.ppat.1004600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heine W, Beckstette M, Heroven AK, Thiemann S, Heise U, Nuss AM, Pisano F, Strowig T, Dersch P (2018) Loss of CNFY toxin-induced inflammation drives Yersinia pseudotuberculosis into persistency. PLoS Pathog 14(2):e1006858. https://doi.org/10.1371/journal.ppat.1006858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chain PS, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, Brubaker RR, Fowler J, Hinnebusch J, Marceau M, Medigue C, Simonet M, Chenal-Francisque V, Souza B, Dacheux D, Elliott JM, Derbise A, Hauser LJ, Garcia E (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101(38):13826–13831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dotsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Haussler S (2012) The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS One 7(2):e31092. https://doi.org/10.1371/journal.pone.0031092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aronesty E (2011) ea-utils: Command-line tools for processing biological data

    Google Scholar 

  7. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. https://doi.org/10.1186/gb-2013-14-4-r36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. https://doi.org/10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  11. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205. https://doi.org/10.1093/nar/gkt1076

    Article  CAS  PubMed  Google Scholar 

  13. Falcon S, Gentleman R (2007) Using GOstats to test gene lists for GO term association. Bioinformatics 23(2):257–258. https://doi.org/10.1093/bioinformatics/btl567

    Article  CAS  PubMed  Google Scholar 

  14. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim JS, Kim CJ, Kusanovic JP, Romero R (2009) A novel signaling pathway impact analysis. Bioinformatics 25(1):75–82. https://doi.org/10.1093/bioinformatics/btn577

    Article  CAS  PubMed  Google Scholar 

  15. Amman F, Wolfinger MT, Lorenz R, Hofacker IL, Stadler PF, Findeiss S (2014) TSSAR: TSS annotation regime for dRNA-seq data. BMC Bioinformatics 15:89. https://doi.org/10.1186/1471-2105-15-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  PubMed  Google Scholar 

  18. Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE (2009) The integrated genome browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25(20):2730–2731. https://doi.org/10.1093/bioinformatics/btp472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sambrook J (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY

    Google Scholar 

  20. Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21(9):1543–1551. https://doi.org/10.1101/gr.121095.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

    Article  CAS  PubMed  Google Scholar 

  22. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oles AK, Pages H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M (2015) Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 12(2):115–121. https://doi.org/10.1038/nmeth.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  24. Westermann AJ, Forstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Muller L, Reinhardt R, Stadler PF, Vogel J (2016) Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529(7587):496–501. https://doi.org/10.1038/nature16547

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to M. Fenner for discussions and Robert Geffers and Michael Jarek from the Department of Genome Analytics for Illumina sequencing. This work was supported from grants of the German Research Foundation (DE616/4, DE616/6, SPP1617-young investigator startup funding for A.M. Nuss), and a stipend of the Helmholtz Center for Infection Research Graduate School for M. Kusmierek. P. Dersch is supported by the German Center for Infection Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Dersch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kusmierek, M., Heroven, A.K., Beckstette, M., Nuss, A.M., Dersch, P. (2019). Discovering Yersinia–Host Interactions by Tissue Dual RNA-Seq. In: Vadyvaloo, V., Lawrenz, M. (eds) Pathogenic Yersinia. Methods in Molecular Biology, vol 2010. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9541-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9541-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9540-0

  • Online ISBN: 978-1-4939-9541-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics