Advertisement

Establishing Cell Culture-Based Experimental Setups for Proximity Labeling Using Ascorbate Peroxidase (APEX)

  • David U. MickEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2008)

Abstract

Proximity labeling by ascorbate peroxidase (APEX) requires appropriate experimental setups that generate sufficient signal over background as a prerequisite for downstream analyses by mass spectrometry. Cell culture-based systems are easily accessible, yet, for proximity labeling of small structures must be carefully optimized in order to give satisfying results. How to establish and characterize APEX cell lines will be the topic of this chapter.

Key words

Proximity labeling Ascorbate peroxidase (APEX) Stable cell lines Immunofluorescence microscopy 

Notes

Acknowledgment

I thank Bianca Schrul and members of the Mick lab for critically reading the manuscript.

References

  1. 1.
    Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810CrossRefGoogle Scholar
  2. 2.
    Zhuang M, Guan S, Wang H et al (2013) Substrates of IAP ubiquitin ligases identified with a designed orthogonal E3 ligase, the NEDDylator. Mol Cell 49:273–282.  https://doi.org/10.1016/j.molcel.2012.10.022CrossRefPubMedGoogle Scholar
  3. 3.
    Rhee H-W, Zou P, Udeshi ND et al (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331CrossRefGoogle Scholar
  4. 4.
    Kim DI, Birendra KC, Zhu W et al (2014) Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc Natl Acad Sci 111:E2453–E2461CrossRefGoogle Scholar
  5. 5.
    Liu X, Salokas K, Tamene F et al (2018) An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat Commun 9:1188CrossRefGoogle Scholar
  6. 6.
    Lobingier BT, Hüttenhain R, Eichel K et al (2017) An approach to spatiotemporally resolve protein interaction networks in living cells. Cell 169:350–360.e12CrossRefGoogle Scholar
  7. 7.
    Paek J, Kalocsay M, Staus DP et al (2017) Multidimensional tracking of GPCR signaling via peroxidase-catalyzed proximity labeling. Cell 169:338–349.e11CrossRefGoogle Scholar
  8. 8.
    Tess C Branon, Justin A Bosch, Ariana D Sanchez, Namrata D Udeshi, Tanya Svinkina, Steven A Carr, Jessica L Feldman, Norbert Perrimon, Alice Y Ting (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nat Biotechnol 36(9):880–887Google Scholar
  9. 9.
    Mick DU, Rodrigues RB, Leib RD et al (2015) Proteomics of primary cilia by proximity labeling. Dev Cell 35:497–512CrossRefGoogle Scholar
  10. 10.
    Gupta GD, Coyaud E, Gonçalves J et al (2015) A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell 163:1484–1499CrossRefGoogle Scholar
  11. 11.
    Lee S-Y, Kang M-G, Park J-S et al (2016) APEX fingerprinting reveals the subcellular localization of proteins of interest. Cell Rep 15:1837–1847CrossRefGoogle Scholar
  12. 12.
    Lam SS, Martell JD, Kamer KJ et al (2015) Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat Methods 12:51–54CrossRefGoogle Scholar
  13. 13.
    Hung V, Zou P, Rhee H-W et al (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55:332–341CrossRefGoogle Scholar
  14. 14.
    Sastri M, Darshi M, Mackey M et al (2017) Sub-mitochondrial localization of the genetic-tagged mitochondrial intermembrane space-bridging components Mic19, Mic60 and Sam50. J Cell Sci 130:3248–3260CrossRefGoogle Scholar
  15. 15.
    Bersuker K, Peterson CWH, To M et al (2018) A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev Cell 44:97–112.e7CrossRefGoogle Scholar
  16. 16.
    Firat-Karalar EN, Rauniyar N, Yates JR, Stearns T (2014) Proximity interactions among centrosome components identify regulators of centriole duplication. Curr Biol 24:664–670.  https://doi.org/10.1016/j.cub.2014.01.067CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mick DU, Dennerlein S, Wiese H et al (2012) MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151:1528–1541CrossRefGoogle Scholar
  18. 18.
    Morita E, Arii J, Christensen D, Votteler J, Sundquist WI (2012) Attenuated protein expression vectors for use in siRNA rescue experiments. BioTechniques 0:1–5PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ibrahim SF, van den Engh G (2003) High-speed cell sorting: fundamentals and recent advances. Curr Opin Biotechnol 14(1):5–12CrossRefGoogle Scholar
  20. 20.
    Mick DU, Fox TD, Rehling P (2011) Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nat Rev Mol Cell Biol 12:14–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Human and Molecular Biology (ZHMB), Medical Biochemistry and Molecular BiologySaarland University School of MedicineHomburgGermany

Personalised recommendations