Affinity Conjugation for Rapid and Covalent Labeling of Proteins in Live Cells

  • Xi Chen
  • Fu Li
  • Yao-Wen WuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2008)


Protein labeling is enormously useful for characterization of protein function in live cells and study of the related cellular processes. Covalent labeling of protein using affinity conjugation confers stable and selective labeling of protein in cells. Affinity conjugation combines a specific ligand-protein interaction with a proximity-induced reaction to selectively label the protein of interest (POI) in the cell. Therefore, either a fluorogenic probe is directly introduced to the POI or a bioorthogonal group is incorporated to the POI, which is subsequently labeled with a fluorescent probe. Here, we describe a method for affinity conjugation of protein with a fluorogenic probe and a “tagging-then-labeling” approach by a combination of affinity conjugation with bioorthogonal reactions.

Key words

Protein labeling Chemical probes In vivo chemical labeling eDHFR tag Affinity conjugation Bioorthogonal reactions 



This work was supported by the Deutsche Forschungsgemeinschaft, DFG (grant No.: SPP 1623), European Research Council, ERC (ChemBioAP), Vetenskapsrådet (Nr. 2018-04585) and The Knut and Alice Wallenberg Foundation.


  1. 1.
    Giepmans BNG, Adams SR, Ellisman MH et al (2006) Review – The fluorescent toolbox for assessing protein location and function. Science 312:217–224CrossRefGoogle Scholar
  2. 2.
    Sameiro M, Goncalves T (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212CrossRefGoogle Scholar
  3. 3.
    Chen X, Wu YW (2016) Selective chemical labeling of proteins. Org Biomol Chem 14:5417–5439CrossRefGoogle Scholar
  4. 4.
    Spicer CD, Davis BG (2014) Selective chemical protein modification. Nat Commun 5:4740CrossRefGoogle Scholar
  5. 5.
    Jing CR, Cornish VW (2011) Chemical tags for labeling proteins inside living cells. Accounts Chem Res 44:784–792CrossRefGoogle Scholar
  6. 6.
    Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998CrossRefGoogle Scholar
  7. 7.
    Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272CrossRefGoogle Scholar
  8. 8.
    Zakeri B, Fierer JO, Celik E et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697CrossRefGoogle Scholar
  9. 9.
    Guignet EG, Hovius R, Vogel H (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22:440–444CrossRefGoogle Scholar
  10. 10.
    Ojida A, Honda K, Shinmi D et al (2006) Oligo-Asp Tag/Zn(II) complex probe as a new pair for labeling and fluorescence imaging of proteins. J Am Chem Soc 128:10452–10459CrossRefGoogle Scholar
  11. 11.
    Chen I, Howarth M, Lin WY et al (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2:99–104CrossRefGoogle Scholar
  12. 12.
    Sato H, Ikeda M, Suzuki K et al (1996) Site-specific modification of interleukin-2 by the combined use of genetic engineering techniques and transglutaminase. Biochemistry 35:13072–13080CrossRefGoogle Scholar
  13. 13.
    Miller LW, Cai YF, Sheetz MP et al (2005) In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat Methods 2:255–257CrossRefGoogle Scholar
  14. 14.
    Clackson T, Yang W, Rozamus LW et al (1998) Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A 95:10437–10442CrossRefGoogle Scholar
  15. 15.
    Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89CrossRefGoogle Scholar
  16. 16.
    Los GV, Encell LP, McDougall MG et al (2008) HatoTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382CrossRefGoogle Scholar
  17. 17.
    Halo TL, Appelbaum J, Hobert EM et al (2009) Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. J Am Chem Soc 131:438–439CrossRefGoogle Scholar
  18. 18.
    Eldridge GM, Weiss GA (2011) Hydrazide reactive peptide tags for site-specific protein labeling. Bioconjug Chem 22:2143–2153CrossRefGoogle Scholar
  19. 19.
    Chen Z, Popp BV, Bovet CL et al (2011) Site-specific protein modification with a dirhodium metallopeptide catalyst. ACS Chem Biol 6:920–925CrossRefGoogle Scholar
  20. 20.
    Liu M, Ji ZY, Zhang MJ et al (2017) Versatile site-selective protein reaction guided by WW Domain-peptide motif interaction. Bioconjug Chem 28:2199–2205CrossRefGoogle Scholar
  21. 21.
    Lu Y, Huang F, Wang JP et al (2014) Affinity-guided covalent conjugation reactions based on PDZ-peptide and SH3-peptide interactions. Bioconjug Chem 25:989–999CrossRefGoogle Scholar
  22. 22.
    Hauser CT, Tsien RY (2007) A hexahistidine-Zn2+−dye label reveals STIM1 surface exposure. Proc Natl Acad Sci U S A 104:3693–3697CrossRefGoogle Scholar
  23. 23.
    Yin J, Liu F, Li XH et al (2004) Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc 126:7754–7755CrossRefGoogle Scholar
  24. 24.
    George N, Pick H, Vogel H et al (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126:8896–8897CrossRefGoogle Scholar
  25. 25.
    Yin J, Straight PD, McLoughlin SM et al (2005) Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc Natl Acad Sci U S A 102:15815–15820CrossRefGoogle Scholar
  26. 26.
    Zhou Z, Cironi P, Lin AJ et al (2007) Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol 2:337–346CrossRefGoogle Scholar
  27. 27.
    Fernandez-Suarez M, Baruah H, Martinez-Hernandez L et al (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 25:1483–1487CrossRefGoogle Scholar
  28. 28.
    Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3:321–322CrossRefGoogle Scholar
  29. 29.
    Popp MW, Antos JM, Grotenbreg GM et al (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3:707–708CrossRefGoogle Scholar
  30. 30.
    Wollack JW, Silverman JM, Petzold CJ et al (2009) A minimalist substrate for enzymatic peptide and protein conjugation. Chembiochem 10:2934–2943CrossRefGoogle Scholar
  31. 31.
    Giriat I, Muir TW (2003) Protein semi-synthesis in living cells. J Am Chem Soc 125:7180–7181CrossRefGoogle Scholar
  32. 32.
    Heller K, Ochtrop P, Albers MF et al (2015) Covalent protein labeling by enzymatic phosphocholination. Angew Chem Int Ed 54:10327–10330CrossRefGoogle Scholar
  33. 33.
    Schumacher D, Helma J, Mann FA et al (2015) Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew Chem Int Ed 54:13787–13791CrossRefGoogle Scholar
  34. 34.
    Chen X, Li F, Wu YW (2015) Chemical labeling of intracellular proteins via affinity conjugation and strain-promoted cycloadditions in live cells. Chem Commun 51:16537–16540CrossRefGoogle Scholar
  35. 35.
    Liu W, Li F, Chen X et al (2014) A rapid and fluorogenic IMP-AcBODIPY probe for covalent labeling of proteins in live cells. J Am Chem Soc 136:4468–4471CrossRefGoogle Scholar
  36. 36.
    Hori Y, Ueno H, Mizukami S et al (2009) Photoactive yellow protein-based protein labeling system with turn-on fluorescence intensity. J Am Chem Soc 131:16610–16611CrossRefGoogle Scholar
  37. 37.
    Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136CrossRefGoogle Scholar
  38. 38.
    Mizukami S, Watanabe S, Hori Y et al (2009) Covalent protein labeling based on noncatalytic beta-lactamase and a designed FRET substrate. J Am Chem Soc 131:5016–5017CrossRefGoogle Scholar
  39. 39.
    Bonasio R, Carman CV, Kim E et al (2007) Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc Natl Acad Sci U S A 104:14753–14758CrossRefGoogle Scholar
  40. 40.
    Peng T, Hang HC (2016) Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J Am Chem Soc 138:14423–14433CrossRefGoogle Scholar
  41. 41.
    Uttamapinant C, Howe JD, Lang K et al (2015) Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc 137:4602–4605CrossRefGoogle Scholar
  42. 42.
    Tsukiji S, Miyagawa M, Takaoka Y et al (2009) Ligand-directed tosyl chemistry for protein labeling in vivo. Nat Chem Biol 5:341–343CrossRefGoogle Scholar
  43. 43.
    Fujishima SH, Yasui R, Miki T et al (2012) Ligand-directed acyl imidazole chemistry for labeling of membrane-bound proteins on live cells. J Am Chem Soc 134:3961–3964CrossRefGoogle Scholar
  44. 44.
    Yamaguchi T, Asanuma M, Nakanishi S et al (2014) Turn-ON fluorescent affinity labeling using a small bifunctional O-nitrobenzoxadiazole unit. Chem Sci 5:1021–1029CrossRefGoogle Scholar
  45. 45.
    Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550:53–60CrossRefGoogle Scholar
  46. 46.
    Hughes LD, Rawle RJ, Boxer SG (2014) Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLoS One 9:e87649CrossRefGoogle Scholar
  47. 47.
    Podgorski K, Terpetschnig E, Klochko OP et al (2012) Ultra-bright and -stable red and near-infrared squaraine fluorophores for in vivo two-photon imaging. PLoS One. 7Google Scholar
  48. 48.
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76CrossRefGoogle Scholar
  49. 49.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795CrossRefGoogle Scholar
  50. 50.
    Lukinavicius G, Umezawa K, Olivier N et al (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139CrossRefGoogle Scholar
  51. 51.
    Debets MF, van der Doelen CWJ, Rutjes FPJT et al (2010) Azide: a unique dipole for metal-free bioorthogonal ligations. Chembiochem 11:1168–1184CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical Genomics Centre of the Max Planck SocietyDortmundGermany
  2. 2.Max Planck Institute for Molecular PhysiologyDortmundGermany
  3. 3.Department of ChemistryUmeå UniversityUmeåSweden

Personalised recommendations