Skip to main content

Affinity Conjugation for Rapid and Covalent Labeling of Proteins in Live Cells

  • Protocol
  • First Online:
Proximity Labeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2008))

  • 3006 Accesses

Abstract

Protein labeling is enormously useful for characterization of protein function in live cells and study of the related cellular processes. Covalent labeling of protein using affinity conjugation confers stable and selective labeling of protein in cells. Affinity conjugation combines a specific ligand-protein interaction with a proximity-induced reaction to selectively label the protein of interest (POI) in the cell. Therefore, either a fluorogenic probe is directly introduced to the POI or a bioorthogonal group is incorporated to the POI, which is subsequently labeled with a fluorescent probe. Here, we describe a method for affinity conjugation of protein with a fluorogenic probe and a “tagging-then-labeling” approach by a combination of affinity conjugation with bioorthogonal reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giepmans BNG, Adams SR, Ellisman MH et al (2006) Review – The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  Google Scholar 

  2. Sameiro M, Goncalves T (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  Google Scholar 

  3. Chen X, Wu YW (2016) Selective chemical labeling of proteins. Org Biomol Chem 14:5417–5439

    Article  Google Scholar 

  4. Spicer CD, Davis BG (2014) Selective chemical protein modification. Nat Commun 5:4740

    Article  Google Scholar 

  5. Jing CR, Cornish VW (2011) Chemical tags for labeling proteins inside living cells. Accounts Chem Res 44:784–792

    Article  Google Scholar 

  6. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48:6974–6998

    Article  Google Scholar 

  7. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    Article  Google Scholar 

  8. Zakeri B, Fierer JO, Celik E et al (2012) Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A 109:E690–E697

    Article  Google Scholar 

  9. Guignet EG, Hovius R, Vogel H (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22:440–444

    Article  Google Scholar 

  10. Ojida A, Honda K, Shinmi D et al (2006) Oligo-Asp Tag/Zn(II) complex probe as a new pair for labeling and fluorescence imaging of proteins. J Am Chem Soc 128:10452–10459

    Article  Google Scholar 

  11. Chen I, Howarth M, Lin WY et al (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2:99–104

    Article  Google Scholar 

  12. Sato H, Ikeda M, Suzuki K et al (1996) Site-specific modification of interleukin-2 by the combined use of genetic engineering techniques and transglutaminase. Biochemistry 35:13072–13080

    Article  Google Scholar 

  13. Miller LW, Cai YF, Sheetz MP et al (2005) In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat Methods 2:255–257

    Article  Google Scholar 

  14. Clackson T, Yang W, Rozamus LW et al (1998) Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A 95:10437–10442

    Article  Google Scholar 

  15. Keppler A, Gendreizig S, Gronemeyer T et al (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89

    Article  Google Scholar 

  16. Los GV, Encell LP, McDougall MG et al (2008) HatoTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382

    Article  Google Scholar 

  17. Halo TL, Appelbaum J, Hobert EM et al (2009) Selective recognition of protein tetraserine motifs with a cell-permeable, pro-fluorescent bis-boronic acid. J Am Chem Soc 131:438–439

    Article  Google Scholar 

  18. Eldridge GM, Weiss GA (2011) Hydrazide reactive peptide tags for site-specific protein labeling. Bioconjug Chem 22:2143–2153

    Article  Google Scholar 

  19. Chen Z, Popp BV, Bovet CL et al (2011) Site-specific protein modification with a dirhodium metallopeptide catalyst. ACS Chem Biol 6:920–925

    Article  Google Scholar 

  20. Liu M, Ji ZY, Zhang MJ et al (2017) Versatile site-selective protein reaction guided by WW Domain-peptide motif interaction. Bioconjug Chem 28:2199–2205

    Article  Google Scholar 

  21. Lu Y, Huang F, Wang JP et al (2014) Affinity-guided covalent conjugation reactions based on PDZ-peptide and SH3-peptide interactions. Bioconjug Chem 25:989–999

    Article  Google Scholar 

  22. Hauser CT, Tsien RY (2007) A hexahistidine-Zn2+−dye label reveals STIM1 surface exposure. Proc Natl Acad Sci U S A 104:3693–3697

    Article  Google Scholar 

  23. Yin J, Liu F, Li XH et al (2004) Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc 126:7754–7755

    Article  Google Scholar 

  24. George N, Pick H, Vogel H et al (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126:8896–8897

    Article  Google Scholar 

  25. Yin J, Straight PD, McLoughlin SM et al (2005) Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc Natl Acad Sci U S A 102:15815–15820

    Article  Google Scholar 

  26. Zhou Z, Cironi P, Lin AJ et al (2007) Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol 2:337–346

    Article  Google Scholar 

  27. Fernandez-Suarez M, Baruah H, Martinez-Hernandez L et al (2007) Redirecting lipoic acid ligase for cell surface protein labeling with small-molecule probes. Nat Biotechnol 25:1483–1487

    Article  Google Scholar 

  28. Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3:321–322

    Article  Google Scholar 

  29. Popp MW, Antos JM, Grotenbreg GM et al (2007) Sortagging: a versatile method for protein labeling. Nat Chem Biol 3:707–708

    Article  Google Scholar 

  30. Wollack JW, Silverman JM, Petzold CJ et al (2009) A minimalist substrate for enzymatic peptide and protein conjugation. Chembiochem 10:2934–2943

    Article  Google Scholar 

  31. Giriat I, Muir TW (2003) Protein semi-synthesis in living cells. J Am Chem Soc 125:7180–7181

    Article  Google Scholar 

  32. Heller K, Ochtrop P, Albers MF et al (2015) Covalent protein labeling by enzymatic phosphocholination. Angew Chem Int Ed 54:10327–10330

    Article  Google Scholar 

  33. Schumacher D, Helma J, Mann FA et al (2015) Versatile and efficient site-specific protein functionalization by tubulin tyrosine ligase. Angew Chem Int Ed 54:13787–13791

    Article  Google Scholar 

  34. Chen X, Li F, Wu YW (2015) Chemical labeling of intracellular proteins via affinity conjugation and strain-promoted cycloadditions in live cells. Chem Commun 51:16537–16540

    Article  Google Scholar 

  35. Liu W, Li F, Chen X et al (2014) A rapid and fluorogenic IMP-AcBODIPY probe for covalent labeling of proteins in live cells. J Am Chem Soc 136:4468–4471

    Article  Google Scholar 

  36. Hori Y, Ueno H, Mizukami S et al (2009) Photoactive yellow protein-based protein labeling system with turn-on fluorescence intensity. J Am Chem Soc 131:16610–16611

    Article  Google Scholar 

  37. Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136

    Article  Google Scholar 

  38. Mizukami S, Watanabe S, Hori Y et al (2009) Covalent protein labeling based on noncatalytic beta-lactamase and a designed FRET substrate. J Am Chem Soc 131:5016–5017

    Article  Google Scholar 

  39. Bonasio R, Carman CV, Kim E et al (2007) Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots. Proc Natl Acad Sci U S A 104:14753–14758

    Article  Google Scholar 

  40. Peng T, Hang HC (2016) Site-specific bioorthogonal labeling for fluorescence imaging of intracellular proteins in living cells. J Am Chem Soc 138:14423–14433

    Article  Google Scholar 

  41. Uttamapinant C, Howe JD, Lang K et al (2015) Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc 137:4602–4605

    Article  Google Scholar 

  42. Tsukiji S, Miyagawa M, Takaoka Y et al (2009) Ligand-directed tosyl chemistry for protein labeling in vivo. Nat Chem Biol 5:341–343

    Article  Google Scholar 

  43. Fujishima SH, Yasui R, Miki T et al (2012) Ligand-directed acyl imidazole chemistry for labeling of membrane-bound proteins on live cells. J Am Chem Soc 134:3961–3964

    Article  Google Scholar 

  44. Yamaguchi T, Asanuma M, Nakanishi S et al (2014) Turn-ON fluorescent affinity labeling using a small bifunctional O-nitrobenzoxadiazole unit. Chem Sci 5:1021–1029

    Article  Google Scholar 

  45. Chin JW (2017) Expanding and reprogramming the genetic code. Nature 550:53–60

    Article  Google Scholar 

  46. Hughes LD, Rawle RJ, Boxer SG (2014) Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLoS One 9:e87649

    Article  Google Scholar 

  47. Podgorski K, Terpetschnig E, Klochko OP et al (2012) Ultra-bright and -stable red and near-infrared squaraine fluorophores for in vivo two-photon imaging. PLoS One. 7

    Google Scholar 

  48. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  Google Scholar 

  49. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795

    Article  Google Scholar 

  50. Lukinavicius G, Umezawa K, Olivier N et al (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139

    Article  Google Scholar 

  51. Debets MF, van der Doelen CWJ, Rutjes FPJT et al (2010) Azide: a unique dipole for metal-free bioorthogonal ligations. Chembiochem 11:1168–1184

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft, DFG (grant No.: SPP 1623), European Research Council, ERC (ChemBioAP), Vetenskapsrådet (Nr. 2018-04585) and The Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao-Wen Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, X., Li, F., Wu, YW. (2019). Affinity Conjugation for Rapid and Covalent Labeling of Proteins in Live Cells. In: Sunbul, M., Jäschke, A. (eds) Proximity Labeling. Methods in Molecular Biology, vol 2008. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9537-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9537-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9536-3

  • Online ISBN: 978-1-4939-9537-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics