Abstract
Persulfide or polysulfide formation on Cys residues is emerging as an abundant protein posttranslational modification, with important regulatory functions. However, as many other Cys oxidative modifications, per- and polysulfides are relatively labile, dynamically interchanging species, which makes their intracellular detections challenging. Here we report our recently developed highly selective method, Protein Persulfide Detection Protocol (ProPerDP), which can detect protein per- and polysulfide species in isolated protein systems, in blood plasma, or in cells and tissue samples. The method is easy to use and relatively inexpensive and requires only readily commercially available reagents. The biggest advantage of ProPerDP compared to other previously published persulfide detecting methods is the fact that in this protocol, all thiol and persulfide species are appropriately alkylated before any cell lysis step. This greatly reduces the potential of detecting lysis-induced oxidation-driven artifact persulfide formation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- A549:
-
Adenocarcinomic human alveolar basal epithelial cells
- ACN:
-
Acetonitrile
- BCA:
-
Bicinchoninic acid
- BCIP:
-
5-Bromo-4-chloro-3′-indolyl phosphate p-toluidine salt
- BSA:
-
Bovine serum albumin
- CHAPS:
-
3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate
- Cys:
-
Cysteine
- DMEM-F12:
-
Dulbecco’s modified eagle medium with F12 nutrient mixture
- DTNB:
-
5,5′-Dithiobis(2-nitrobenzoic acid), Ellman’s reagent
- DTPA:
-
Diethylenetriaminepentaacetic acid
- DTT:
-
Dithiothreitol
- EDTA:
-
Ethylenediaminetetraacetic acid
- EGTA:
-
Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
- EMEM:
-
Eagle’s minimum essential medium
- FBS:
-
Heat-inactivated fetal bovine serum
- HBSS:
-
Hank’s Balanced Salt Solution
- HEK293:
-
Human embryonic kidney cells 293
- HEPES:
-
4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid
- HSA:
-
Human serum albumin
- IAB:
-
EZ-Link™ Iodoacetyl-PEG2-Biotin
- IAF:
-
5-Iodoacetamido fluorescein
- IAM:
-
Iodoacetamide
- NBT:
-
Nitro-blue tetrazolium chloride
- PBS:
-
Phosphate-buffered saline
- PIC:
-
Protease inhibitor cocktail
- Pipes:
-
Piperazine-N,N′-bis(2-ethanesulfonic acid)
- ProPerDP:
-
Protein persulfide detection protocol
- PVDF:
-
Polyvinylidene fluoride
- SB:
-
SDS sample buffer, nonreducing, 4×
- TCEP:
-
Tris(2-carboxyethyl)phosphine
- TE:
-
100 mM Tris–HCl, 2 mM EDTA, pH = 7.4
- TNB-:
-
2-Nitro-5-thiobenzoate
- TR/GR-null:
-
Mouse liver lacking thioredoxin reductase and glutathione reductase
- Trx:
-
Thioredoxin
- TTBS:
-
20 mM Tris, 0.5 M NaCl, pH 7.5 + 0.05% Tween 20
References
Doka E, Pader I, Biro A, Johansson K, Cheng Q, Ballago K, Prigge JR, Pastor-Flores D, Dick TP, Schmidt EE, Arner ES, Nagy P (2016) A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv 2(1):e1500968. https://doi.org/10.1126/sciadv.1500968
Mustafa AK, Gadalla MM, Sen N, Kim S, Mu WT, Gazi SK, Barrow RK, Yang GD, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2(96):ARTN ra72. https://doi.org/10.1126/scisignal.2000464
Nagy P (2015) Mechanistic chemical perspective of hydrogen sulfide signaling. Methods Enzymol 554:3–29. https://doi.org/10.1016/bs.mie.2014.11.036
Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie-Baez NO, Xian M, Fukuto JM, Akaike T (2014) Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci USA 111(21):7606–7611. https://doi.org/10.1073/pnas.1321232111
Cuevasanta E, Moller MN, Alvarez B (2016) Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys. https://doi.org/10.1016/j.abb.2016.09.018
Yadav PK, Martinov M, Vitvitsky V, Seravalli J, Wedmann R, Filipovic MR, Banerjee R (2016) Biosynthesis and reactivity of cysteine persulfides in signaling. J Am Chem Soc 138(1):289–299. https://doi.org/10.1021/jacs.5b10494
Millikin R, Bianco CL, White C, Saund SS, Henriquez S, Sosa V, Akaike T, Kumagai Y, Soeda S, Toscano JP, Lin J, Fukuto JM (2016) The chemical biology of protein hydropersulfides: studies of a possible protective function of biological hydropersulfide generation. Free Radic Biol Med 97:136–147. https://doi.org/10.1016/j.freeradbiomed.2016.05.013
Bianco CL, Chavez TA, Sosa V, Saund SS, Nguyen QN, Tantillo DJ, Ichimura AS, Toscano JP, Fukuto JM (2016) The chemical biology of the persulfide (RSSH)/perthiyl (RSS.) redox couple and possible role in biological redox signaling. Free Radic Biol Med 101:20–31. https://doi.org/10.1016/j.freeradbiomed.2016.09.020
Bailey TS, Pluth MD (2015) Reactions of isolated persulfides provide insights into the interplay between H2S and persulfide reactivity. Free Radic Biol Med 89:662–667. https://doi.org/10.1016/j.freeradbiomed.2015.08.017
Ono K, Akaike T, Sawa T, Kumagai Y, Wink DA, Tantillo DJ, Hobbs AJ, Nagy P, Xian M, Lin J, Fukuto JM (2014) Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med 77:82–94. https://doi.org/10.1016/j.freeradbiomed.2014.09.007
Jung M, Kasamatsu S, Matsunaga T, Akashi S, Ono K, Nishimura A, Morita M, Abdul Hamid H, Fujii S, Kitamura H, Sawa T, Ida T, Motohashi H, Akaike T (2016) Protein polysulfidation-dependent persulfide dioxygenase activity of ethylmalonic encephalopathy protein 1. Biochem Biophys Res Commun 480(2):180–186. https://doi.org/10.1016/j.bbrc.2016.10.022
Paul BD, Snyder SH (2012) H2S signalling through protein sulfhydration and beyond. Nat Rev Mol Cell Biol 13(8):499–507. https://doi.org/10.1038/nrm3391
Wedmann R, Onderka C, Wei S, Szijarto IA, Miljkovic JL, Mitrovic A, Lange M, Savitsky S, Yadav PK, Torregrossa R, Harrer EG, Harrer T, Ishii I, Gollasch M, Wood ME, Galardon E, Xian M, Whiteman M, Banerjee R, Filipovic MR (2016) Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chem Sci 7(5):3414–3426. https://doi.org/10.1039/c5sc04818d
Greiner R, Palinkas Z, Basell K, Becher D, Antelmann H, Nagy P, Dick TP (2013) Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signaling 19(15):1749–1765. https://doi.org/10.1089/ars.2012.5041
Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23(10):1541–1543. https://doi.org/10.1021/tx100266a
Nagy P, Palinkas Z, Nagy A, Budai B, Toth I, Vasas A (2014) Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim Biophys Acta 1840(2):876–891. https://doi.org/10.1016/j.bbagen.2013.05.037
Vasas A, Doka E, Fabian I, Nagy P (2015) Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide. Nitric Oxide 46:93–101. https://doi.org/10.1016/j.niox.2014.12.003
Shen X, Peter EA, Bir S, Wang R, Kevil CG (2012) Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radic Biol Med 52(11–12):2276–2283. https://doi.org/10.1016/j.freeradbiomed.2012.04.007
Wintner EA, Deckwerth TL, Langston W, Bengtsson A, Leviten D, Hill P, Insko MA, Dumpit R, VandenEkart E, Toombs CF, Szabo C (2010) A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. Br J Pharmacol 160(4):941–957. https://doi.org/10.1111/j.1476-5381.2010.00704.x
Rabilloud T, Vuillard L, Gilly C, Lawrence JJ (1994) Silver-staining of proteins in polyacrylamide gels: a general overview. Cell Mol Biol 40(1):57–75
Havlis J, Thomas H, Sebela M, Shevchenko A (2003) Fast-response proteomics by accelerated in-gel digestion of proteins. Anal Chem 75(6):1300–1306
Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68(5):850–858
Eriksson S, Prigge JR, Talago EA, Arner ES, Schmidt EE (2015) Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver. Nat Commun 6:6479. https://doi.org/10.1038/ncomms7479
Longen S, Richter F, Kohler Y, Wittig I, Beck KF, Pfeilschifter J (2016) Quantitative persulfide site identification (qPerS-SID) reveals protein targets of H2S releasing donors in mammalian cells. Sci Rep 6:29808. https://doi.org/10.1038/srep29808
Alvarez B, Carballal S, Turell L, Radi R (2010) Formation and reactions of sulfenic acid in human serum albumin. Methods Enzymol 473:117–136. https://doi.org/10.1016/S0076-6879(10)73005-6
Miseta A, Csutora P (2000) Relationship between the occurrence of cysteine in proteins and the complexity of organisms. Mol Biol Evol 17(8):1232–1239
Holmberg A, Blomstergren A, Nord O, Lukacs M, Lundeberg J, Uhlen M (2005) The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 26(3):501–510. https://doi.org/10.1002/elps.200410070
Acknowledgments
Financial support from the Hungarian National Science Foundation (OTKA; grant no.: K109843, KH17_126766, and K18_129286) for P.N.; from the National Institutes of Health (grant no.: R21AG055022-01) for E.E.S., P.N., and E.S.J.A.; and from the Swedish Research Council, Swedish Cancer Society, and Karolinska Institutet for E.S.J.A. is acknowledged. P.N. is a János Bolyai Research Scholar of the Hungarian Academy of Sciences. Dojindo Molecular Technologies Inc. is greatly acknowledged for their kind support of chemical supplies.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Dóka, É., Arnér, E.S.J., Schmidt, E.E., Nagy, P. (2019). ProPerDP: A Protein Persulfide Detection Protocol. In: Bełtowski, J. (eds) Vascular Effects of Hydrogen Sulfide. Methods in Molecular Biology, vol 2007. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9528-8_5
Download citation
DOI: https://doi.org/10.1007/978-1-4939-9528-8_5
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-4939-9527-1
Online ISBN: 978-1-4939-9528-8
eBook Packages: Springer Protocols